首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Primitive human hemopoietic progenitor cells identified by surface membrane markers CD33-CD34+ are capable of expansion into lineage-restricted precursors following in vitro stimulation by hemopoietic regulators such as stem cell factor (SCF) and interleukin-3 (IL-3). In search of ionic currents involved in cytokine-induced progenitor cell growth and differentiation, human umbilical cord blood CD33-CD34+ cells were subjected to perforated patch-clamp recordings following overnight incubation with SCF and/or IL-3. An inward rectifying potassium channel (Kir) was found in 33% of control unstimulated cells, in 34% of cells incubated with IL-3, in 31% of cells incubated with SCF and in 75% of cells incubated with IL-3 plus SCF. Kir activity increased with elevation of extracellular potassium and was blocked by extracellular Cs+ or Ba2+ Antisense oligodeoxynucleotides directed against Kir blocked both mRNA and functional expression of Kir channels. Kir antisense also inhibited the in vitro expansion of cytokine-stimulated CD33-CD34+ cells into erythroid (BFU-E) and myeloid (GM-CFU) progenitors in 7-day suspension cultures. Extracellular Cs+ or Ba2+ induced a similar degree of inhibition (40-60%) of progenitor cell generation. These findings strongly suggest an essential role for Kir in the process of cytokine-induced primitive progenitor cell growth and differentiation.  相似文献   

2.
The ligand for flt-3 (FLT3L) exhibits striking structural homology with stem cell factor (SCF) and monocyte colony-stimulating factor (M-CSF) and also acts in synergy with a range of other hematopoietic growth factors (HGF). In this study, we show that FLT3L responsive hematopoietic progenitor cells (HPC) are CD34+CD38-, rhodamine 123dull, and hydroperoxycyclophosphamide (4-HC) resistant. To investigate the basis for the capacity of FLT3L to augment the de novo generation of myeloid progenitors from CD34+CD38- cells, single bone marrow CD34+CD38- cells were sorted into Terasaki wells containing serum-free medium supplemented with interleukin-3 (IL-3), IL-6, granulocyte colony-stimulating factor (G-CSF), SCF (4 HGF) +/- FLT3L. Under these conditions, FLT3L recruited approximately twofold more CD34+CD38- cells into division than 4 HGF alone. The enhanced proliferative response to FLT3L was evident by day 3 and was maintained at all subsequent time points examined. In accord with these findings, we also show that transduction of CD34+CD38- cells with the LAPSN retrovirus is enhanced by FLT3L. The results of these experiments therefore indicate that increased recruitment of primitive HPC into cell cycle underlies the ex vivo expansion potential of FLT3L and also its ability to improve retroviral transduction of HPC.  相似文献   

3.
Exit of primitive hematopoietic progenitor cells (HPCs) from the G0 phase of the cell cycle in response to in vitro cytokine stimulation is a limiting step in successful ex vivo expansion. Simultaneous DNA/RNA staining with Hoechst 33342 and pyronin Y was used to separate human bone marrow CD34+ cells residing in G0 (G0CD34+) from those cycling in G1 and S/G2+M. Compared with CD34+ cells isolated in G1, G0CD34+ cells were characterized by a delayed response to cytokine stimulation and were enriched for long-term hematopoietic culture-initiating cells. We next compared the activation kinetics of individually sorted G0CD34+ cells stimulated with stem cell factor (SCF), flt3-ligand (FL), or interleukin-3 (IL-3) as single factors. In a novel clonal proliferation assay, the functional status of cells that had remained quiescent after an initial 7-day period and of those that had completed successive division cycles under each of these three factors was evaluated by assessment of subsequent proliferative capacity and maintenance of colony-forming cell precursor (pre-CFC) activity. All three cytokines were equally able to support the survival of primitive HPCs in the absence of cell division. Cells that did not respond to any cytokine stimulation for 7 days retained higher proliferative and pre-CFC activities than dividing cells. The hematopoietic function of cells that divided in response to SCF, FL, or IL-3 decreased after each division cycle. However, G0CD34+ cells displayed a heterogeneous response pattern to cytokine stimulation whereby SCF appeared to have a superior ability to promote the cycling of cells with high proliferative and pre-CFC activities. These results indicate that HPCs reside in opposing hierarchies of hematopoietic potential and responsiveness to cytokine stimulation. The data also begin to indicate relationships between cellular division in response to different stimuli and maintenance of hematopoietic function.  相似文献   

4.
Telomerase is a ribonucleoprotein polymerase that synthesizes telomeric repeats onto the 3' ends of eukaryotic chromosomes. Activation of telomerase may prevent telomeric shortening and correlates with cell immortality in the germline and certain tumor cells. Candidate hematopoietic stem cells (HSC) from adult bone marrow express low levels of telomerase, which is upregulated with proliferation and/or differentiation. To address this issue, we stimulated purified candidate HSC from human adult bone marrow with stem cell factor (SCF), interleukin-3 (IL-3), and Flt3-ligand (FL). After 5 days in culture, activity was detected in total cell extracts from IL-3-, SCF + FL-, SCF + IL-3-, FL + IL-3-, and SCF + IL-3 + FL-stimulated cultures, but not from cells cultured in SCF or FL alone. Within the CD34(+) fraction of the cultured cells, significant activity was found in the CD34(+)CD71(+) fraction. In addition, PKH26 staining confirmed that detectable telomerase activity was present in dividing PKH26(lo) cells, whereas nondividing PKH26(hi) cells were telomerase negative. Because in these experiments no distinction could be made between cycling "candidate" stem cells that had retained or had lost self-renewal properties, fetal liver cells with a CD34(+)CD38(-) phenotype, highly enriched for cycling stem cells, were also examined and found to express readily detectable levels of telomerase activity. Given the replication-dependent loss of telomeric DNA in hematopoietic cells, these observations suggest that the observed telomerase activity in candidate stem cells is either expressed in a minor subset of stem cells or, more likely, is not sufficient to prevent telomere shortening.  相似文献   

5.
A major potential application for ex vivo culture of hematopoietic progenitor cells is the treatment of cytopenia following high-dose chemotherapy and hematopoietic transplantation. We have previously postulated that infusion of a sufficient number of neutrophil postprogenitor cells generated by ex vivo culture of CD34+ cells may be able to abrogate neutropenia. In this article, we describe further development of an efficient stromal-free, cytokine-dependent, static culture system for generation of these cells. Our previous studies indicated that maximal production of nucleated cells and myeloid progenitor cells from PB CD34+ cells occurred with multiple hematopoietic growth factor (HGF), notably the 6-HGF combination of interleukin (IL)-1, IL-3, IL-6, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage-CSF (GM-CSF), and stem cell factor (SCF). In the present study, we determine the contribution of each of these 6 HGF in generation of neutrophilic precursors. SCF, G-CSF, and IL-3 were found to be the most important HGF for production of neutrophilic cells. The 4-HGF combination of IL-3, IL-6, G-CSF, and SCF was optimized by performing dose-response experiments and shown to be as potent as 6 HGF for production of nascent CFU-GM and neutrophilic precursors.  相似文献   

6.
Malignant cell contamination in autologous transplants is a potential origin of tumor relapse. Ex vivo expansion of CD34(+) blood progenitor cells (BPC) has been proposed as a tool to eliminate tumor cells from autografts. To characterize the influence of culture conditions on survival, growth, and clonogenicity of malignant cells, we isolated primary mammary carcinoma cells from pleural effusions and ascites of patients with metastatic breast cancer and cultured them in the presence of stem cell factor (SCF), interleukin-1beta (IL-1beta), IL-3, IL-6, and erythropoietin (EPO), ie, conditions previously shown to allow efficient ex vivo expansion of CD34(+) BPC. In the presence of serum, tumor cells proliferated during a 7-day culture period and no significant growth-modulatory effect was attributable to the presence of hematopoietic growth factors. When transforming growth factor-beta1 (TGF-beta1) was added to these cultures, proliferation of breast cancer cells was reduced. Expansion of clonogenic tumor cells was seen in the presence of SCF + IL-1beta + IL-3 + IL-6 + EPO, but was suppressed by TGF-beta1. Cocultures of tumor cells in direct cellular contact with hematopoietic cells showed that tumor cell growth could be stimulated by ex vivo expanded hematopoietic cells at high cell densities (5 x 10(5)/mL). In contrast, culture under serum-free conditions resulted in death of greater than 90% of breast cancer cells within 7 days and a further decrease in tumor cell numbers thereafter. In the serum-free cultures, hematopoietic cytokines and cellular contact with CD34(+) BPC could not protect the tumor cells from death. Therefore, ex vivo expansion of CD34(+) BPC in serum-free medium provides an environment for efficient purging of contaminating mammary carcinoma cells. These results have clinical significance for future protocols in autologous progenitor cell transplantation in cancer patients.  相似文献   

7.
Thrombopoietin (Tpo) is a primary regulator of megakaryocyte and platelet production. However, studies in c-mpl-deficient mice suggest that Tpo might also play an important role in early hemopoiesis. Here, the direct ability of Tpo to stimulate stroma-independent growth, multilineage differentiation, and progenitor cell expansion from single primitive CD34+ CD38- human bone marrow cells was investigated. Tpo alone stimulated limited clonal growth, but synergized with c-kit ligand (KL), flt3 ligand (FL), or IL-3 to potently enhance clonogenic growth. Whereas KL and FL in combination stimulated the clonal growth of only 3% of CD34+ CD38- cells, 40% of CD34+ CD38- cells were recruited by KL+FL+Tpo, demonstrating that Tpo promotes the growth of a high fraction of CD34+ CD38- progenitor cells. Additional cytokines (IL-3, IL-6, and erythropoietin (Epo)) did not significantly enhance clonal growth above that observed in response to KL+FL+Tpo. In contrast, Tpo enhanced clonogenic growth in response to KL+FL+IL-3+IL-6+Epo by as much as 80%, implicating a key role for this cytokine in early hemopoiesis. Importantly, we also demonstrate that the majority of Tpo-recruited CD34+ CD38- progenitor cells have a multilineage differentiation potential, and that Tpo promotes prolonged expansion of multipotent progenitors. Specifically, whereas progenitor cells were reduced in cultures containing only KL+FL, addition of Tpo resulted in 40-fold expansion of multipotent progenitors following a 14-day incubation. Finally, we identified inhibitors of Tpo-induced progenitor cell growth, in that TGF-beta as well as TNF-alpha almost completely abrogated the growth of CD34+ CD38- progenitor cells in response to Tpo alone as well as KL+FL+Tpo.  相似文献   

8.
Recently we reported that the human thymus contains a minute population of CD34+CD38dim cells that do not express the T-cell lineage markers CD2 and CD5. The phenotype of this population resembled that of CD34+CD38dim cells present in fetal liver, umbilical cord blood, and bone marrow known to be highly enriched for pluripotent hematopoietic stem cells. In this report we tested the hypothesis that the CD34+CD38dim thymocytes constitute the most primitive hematopoietic cells in the thymus using a combination of phenotypic and functional analyses. It was found that in contrast to CD34+CD38dim cells from fetal liver and bone marrow, CD34+CD38dim cells from the thymus express high levels of CD45RA and are negative for Thy-1. These data indicate that the CD34+CD38dim thymocytes are distinct from pluripotent stem cells. CD34+CD38dim thymocytes differentiate into T cells when cocultured with mouse fetal thymic organs. In addition, individual cells in this population can differentiate either to natural killer cells in the presence of stem cell factor (SCF), interleukin-7 (IL-7), and IL-2 or to dendritic cells in the presence of SCF, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor alpha(TNFalpha), indicating that CD34+CD38dim thymocytes contain multi-potential hematopoietic progenitors. To establish which CD34+ fetal liver subpopulation contains the cells that migrate to the thymus, we investigated the T-cell-developing potential of CD34+CD38dim and CD34+CD38+ fetal liver cells and found that the capacity of CD34+ fetal liver cells to differentiate into T cells is restricted to those cells that are CD38dim. Collectively, these findings indicate that cells from the CD34+CD38dim fetal liver cell population migrate to the thymus before upregulating CD38 and committing to the T-cell lineage.  相似文献   

9.
In vitro exposure of murine hematopoietic stem cells (HSCs) to cell cycle-inducing cytokines has been shown to result in a defect in the ability of these cells to engraft. We used a porcine microvascular endothelial cell (PMVEC) line in conjunction with exogenous interleukin (IL)-3, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), and stem cell factor (SCF) to expand human HSCs that express the CD34 and Thy-1 antigens but lack lineage-associated markers (CD34+Thy-1+Lin- cells). Ex vivo expansion of hematopoietic cells was evaluated in comparison to stromal cell-free, cytokine-supplemented cultures. Cells expressing the CD34+Thy-1+Lin- phenotype were detectable in both culture systems for up to 3 weeks. These cells were reisolated from the cultures and their ability to engraft human fetal bones implanted into SCID mice (SCID-hu bone) was tested. HSCs expanded in PMVEC coculture were consistently capable of competitive marrow repopulation with multilineage (CD19+ B lymphoid, CD33+ myeloid, and CD34+ cells) progeny present 8 weeks postengraftment. In contrast, grafts composed of cells expanded in stroma-free cultures did not lead to multilineage SCID-hu bone repopulation. Proliferation analysis revealed that by 1 week of culture more than 80% of the cells in the PMVEC cocultures expressing the primitive CD34+CD38- phenotype had undergone cell division. Fewer than 1% of the cells that proliferated in the absence of stromal cells remained CD34+CD38-. These data suggest that the proliferation of HSCs in the presence of IL-3, IL-6, GM-CSF, and SCF without stromal cell support may result in impairment of engraftment capacity, which may be overcome by coculture with PMVECs.  相似文献   

10.
Umbilical cord blood (UCB) is an attractive potential alternative to bone marrow (BM) as a source of hematopoietic progenitor cells since the number of progenitors in UCB is similar or even greater than that in normal BM. It was the aim of the present study to analyze the degree of immaturity of UCB progenitor cells. UCB mononuclear (MNC) and/or CD34+ cells were tested for surface antigen phenotype, expression of cytokines receptor, effect of stem cell factor (SCF) on colony growth, resistance to mafosfamide and replating potential. We have found that 34.9 +/- 3.4% and 77.9 +/- 2.6% of UCB CD34+ cells did not express CD38 and CD45RA antigens, respectively, suggesting that UCB contains a high proportion of immature progenitor cells. By means of three-color analysis, the receptor for SCF was detected on the majority of the CD34+ HLA-DR+ subpopulation; in fact, 81.8% +/- 4.3% of CD34+ HLA-DR+ cells were defined as SCF(low) and 8.1 +/- 1.5% as SCF(high). Colony growth of MNC and CD34+ cells was enhanced by the addition of SCF to methylcellulose mixture, resulting in a statistically significant increase in CFU-GM and CFU-GEMM but not in BFU-E numbers. UCB progenitor cells showed a higher resistance to mafosfamide treatment, in comparison to BM; the addition of SCF to the culture medium resulted in a statistically significant increase in mafosfamide concentration required to inhibit 95% of colony growth (P < or = 0.05). Moreover, as shown by single colony transfer assays, the presence of SCF in primary cultures promoted a significantly higher replating potential for both untreated (42 +/- 3.3% vs 21 +/- 4.6%, P < or = 0.018) and mafosfamide-treated samples (62 +/- 5.6% vs 44 +/- 6.1%, P < or = 0.018). In conclusion, UCB is a source of progenitor cells with immature characteristics in terms of surface antigen expression, distribution of SCF receptor, resistance to mafosfamide and replating potential. Therefore, UCB progenitor cells represent an ideal candidate population for experimental programs involving gene transfer and ex vivo stem cell expansion.  相似文献   

11.
We have developed an efficient and rapid method to analyze transduction in human hematopoietic cells and to select them. We constructed two retroviral vectors using the recombinant humanized S65T green fluorescent protein (rHGFP) gene. Transduced cells appeared with specific green fluorescence on microscopy or fluorescence-activated cell sorting (FACS) analysis. The rHGFP gene was placed under the control of two different retroviral promotors (LTR) in the LGSN vector and in the SF-GFP vector. Amphotropic retroviruses were tested on NIH/3T3 fibroblasts or human hematopoietic (K562, TF-1) cell lines. Then CD34+ cells isolated from cord blood were infected three times after a 48-h prestimulation with IL-3, IL-6, SCF or with IL-3, IL-6, SCF, GM-CSF, Flt3-L and TPO. After 6 days of expansion, a similar number of total CD34(+)-derived cells, CD34+ cells and CFC was obtained in non-transduced and transduced cells, demonstrating the absence of toxicity of the GFP. A transduction up to 46% in total CD34(+)-derived cells and 21% of CD34+ cells was shown by FACS analysis. These results were confirmed by fluorescence of colonies in methyl-cellulose (up to 36% of CFU-GM and up to 25% of BFU-E). The FACS sorting of GFP cells led to 83-100% of GFP-positive colonies after 2 weeks of methyl-cellulose culture. Moreover, a mean gene transfer efficiency of 8% was also demonstrated in longterm culture initiating cells (LTC-IC). This rapid and efficient method represents a substantial improvement to monitor gene transfer and retroviral expression of various vectors in characterized human hematopoietic cells.  相似文献   

12.
Tumor cells have been found in autologous hematopoietic cell transplants used after high-dose chemotherapy. To specifically eliminate contaminating mammary tumor cells during ex vivo expansion of CD34+ hematopoietic progenitor cells, we used recombinant immunotoxins (ITs) directed against cell-surface antigens expressed on mammary carcinoma cells. ITs were expressed from fusion cDNAs combining a single-chain antibody fragment (scFv) directed against the Erb-B2 or epidermal growth factor (EGF) receptors with a truncated Pseudomonas exotoxin A fragment devoid of its cell-binding domain. CD34+ hematopoietic progenitor cells did not express Erb-B2 and EGF receptors as detected by Western blotting. Ex vivo expansion of total hematopoietic cells or of colony-forming cells from CD34+ progenitors in the presence of stem-cell factor (SCF), interleukin-1 (IL-1), IL-3, IL-6, and erythropoietin (Epo) was not affected when ITs were added to the cultures. In contrast, MDA-MB 453 and MCF-7 mammary carcinoma cells were depleted in a dose- and time-dependent manner by more than 3 log in coculture with CD34+ cells over a period of 7 days in the presence of 100 to 1,000 ng/mL of anti-Erb-B2 IT. This included elimination of the subpopulations with regrowth potential. Similarly, addition of either anti-Erb-B2 or anti-EGF receptor ITs to primary breast cancer cells isolated from patients with metastatic disease resulted in elimination of cytokeratin-positive cells in seven of seven samples. ITs are highly efficient and convenient to use for the depletion of mammary tumor cells during ex vivo expansion of hematopoietic progenitor-cell autografts.  相似文献   

13.
We investigated the expression of an apoptosis-associated antigen (Fas) (CD95) on hematopoietic progenitor cells in the presence or absence of interferon-gamma (IFN-gamma) and/or tumor necrosis factor-alpha (TNF-alpha). CD34+ cells freshly isolated from bone marrow did not express Fas. However, IFN-gamma and/or TNF-alpha induced the expression of both the mRNA of Fas and Fas itself in a dose-dependent fashion on the surface of CD34+ cells after 48 hours of serum-free culture. IFN-gamma and TNF-alpha had a synergistic effect on the induction of Fas, when both cytokines were added to the culture. The TNF-alpha-induced Fas expression is mediated by p55 TNF-alpha receptor. CD34+ cells cultured in medium alone or with stem cell factor (SCF) showed some slight expression of Fas. When anti-Fas antibody (IgM) was added to CD34+ cells after the induction of Fas expression, CD34+ cells underwent apoptosis, as shown by a decrease in the number of viable cells, morphologic changes, the induction of DNA fragmentation, and a decrease in the number of colony-forming cells (CFC) including colony-forming unit granulocytes/macrophages (CFU-GM) and burst-forming unit erythroids (BFU-E). These observations indicate that IFN-gamma and/or TNF-alpha, well known as negative hematopoietic regulators, induce functional Fas on hematopoietic progenitor cells. The suppression of hematopoiesis by negative hematopoietic regulators may be mediated in part by Fas induction.  相似文献   

14.
Flt3 ligand (FL) has been proposed as a possible modulator of early hematopoietic cell growth. The purpose of this study was to analyze the impact of FL on ex vivo expansion of hematopoietic cells obtained from adult donors. We sought to precisely identify hematopoietic populations responsive to FL and to quantitate the ability of FL to enhance the survival and/or proliferation of early hematopoietic precursors in a stroma-free culture system. Towards that end, four CD34+ subsets were isolated and their response to FL was characterized. In methylcellulose, FL significantly increased colony formation by CD34+ CD38dim cells but not CD34+ CD38+ cells. In suspension culture, the enhancement of cell expansion by FL was 10 times greater with the CD34+ CD38dim fraction than the CD34+ CD38+ fraction. FL stimulated the generation of colony-forming unit-granulocyte-macrophage (CFU-GM) from the CD34+CD38dim fraction by 14.5- +/- 5.6-fold. To determine if CD34+ CD38dim cells responded uniformly to FL, the population was subdivided into a CD34+ CD38dim CD33dim HLA-DR+ (HLA-DR+) fraction and a CD34+ CD38dim CD33(dim) HLA-DRdim (HLA-DRdim) fraction. FL was far more effective at stimulating cell and progenitor growth from the HLA-DR+ fraction. To determine if FL enhanced or depleted the number of precommitted cells in expansion culture, CD34+ CD38dim and HLA-DR+ fractions were incubated in liquid culture and analyzed by flow cytometry. Inclusion of FL enhanced the absolute number of primitive CD34+ CD33dim cells and CD34+ HLA-DRdim cells after 5 to 12 days of cultivation. To confirm immunophenotypic data, the effect of FL on long-term culture-initiating cells (LTCIC) was determined. After 2 weeks of incubation of CD34+ CD38dim or HLA-DR+ cultures, LTCIC recoveries were significantly higher with FL in 5 of 6 trials (P < . 05). For HLA-DR+ cells, LTCIC recoveries averaged 214% +/- 87% of input with FL and 24% +/- 16% without FL. In contrast, HLA-DRdim LTCIC could not be maintained in stroma-free culture. We conclude that less than 10% of CD34+ cells respond vigorously to FL and that those cells are contained within the HLA-DR+ fraction. FL stimulates the expansion of total cells, CD34+ cells, and CFU-GM and enhances the pool of early CD34+ CD33(dim) cells, CD34+ HLA-DRdim cells, and LTCIC. These data indicate that it is possible to expand hematopoietic progenitors from adult donors without losing precursors from the precommitted cell pool.  相似文献   

15.
Fas antigen (Fas Ag; CD95) is a cell surface molecule that can mediate apoptosis. Bcl-2 is a cytoplasmic molecule that prolongs cellular survival by inhibiting apoptosis. To investigate the role of both molecules in hematopoiesis, we evaluated the expression of Fas Ag and Bcl-2 on CD34+ hematopoietic progenitor cells expanded in vitro. CD34+ cells isolated from bone marrow were cultured in iscove's modified Dulbecco's medium supplemented with 10% fetal calf serum, 1% bovine serum albumin, 50 ng/mL stem cell factor, 50 ng/mL interleukin-3 (IL-3), 50 ng/mL IL-6, 100 ng/mL granulocyte colony-stimulating factor, and 3 U/mL erythropoietin for 7 days. Colony-forming unit of granulocytes/macrophages (CFU-GM) and burst-forming unit of erythroids (BFU-E) were expanded 6.9-fold and 8.8-fold in number at day 5 of culture, respectively. Freshly isolated CD34+ cells did not express Fas Ag, whereas approximately half of them expressed Bcl-2. CD34+ cells cultured with hematopoietic growth factors gradually became positive for Fas Ag and rapidly lost Bcl-2 expression. Furthermore, apoptosis was induced in the cultured CD34+ population when anti-Fan antibody (IgM; 1 microgram/mL) was added, as shown by significant decrease in the number of viable cells, morphologic changes, induction of DNA fragmentation, and significant decrease in the number of clonogenic progenitor cells including CFU. GM and BFU-E. These results indicate that functional expression of Fas Ag is induced on CD34+ cells expanded in vitro in the presence of hematopoietic growth factors. Induction of Fas Ag and downregulation of Bcl-2 may be expressed as part of the differentiation program of hematopoietic cells and may be involved in the regulation of hematopoiesis.  相似文献   

16.
We previously reported the aberrant growth of granulocyte-macrophage (GM) progenitors induced by a combination of stem cell factor (SCF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in juvenile chronic myelogenous leukemia (JCML). We examined here the effects of thrombopoietin (TPO) on the proliferation and differentiation of hematopoietic progenitors in JCML. In serum-deprived single-cell cultures of normal bone marrow (BM) CD34+CD38high cells, the addition of TPO to the culture containing SCF + GM-CSF resulted in an increase in the number and size of GM colonies. In the JCML cultures, in contrast, the number of SCF + GM-CSF-dependent GM colonies was not increased by the addition of TPO. However, the TPO addition caused an enlargement of GM colonies in cultures from the JCML patients to a significantly greater extent compared with the normal controls. There was no difference in the type of the constituent cells of GM colonies with or without TPO grown by JCML BM cells. A flow cytometric analysis showed that the c-Mpl expression was found on CD13+ myeloid cells generated by CD34+CD38high BM cells from JCML patients, but was at an undetectable level in normal controls. The addition of TPO to the culture containing SCF or SCF + GM-CSF caused a significant increase in the production of GM colony-forming cells by JCML CD34+CD38neg/low population, indicating the stimulatory effects of TPO on JCML primitive hematopoietic progenitors. Normal BM cells yielded a significant number of megakaryocytes as well as myeloid cells in response to a combination of SCF, GM-CSF, and/or TPO. In contrast, megakaryocytic cells were barely produced by the JCML progenitors. Our results may provide a fundamental insight that the administration of TPO enhances the aberrant growth of GM progenitors rather than the recovery of megakaryocytopoiesis.  相似文献   

17.
PURPOSE: Hematopoietic growth factor(s) (GF) may exert positive effects in vitro or in vivo on the survival of hematopoietic stem and progenitor cells after accidental or therapeutic total body irradiation. METHODS AND MATERIALS: We studied the clonogenic survival and DNA repair of irradiated (0.36, 0.73, and 1.46 Gy) CD34+ cord blood (CB) cells after short-term incubation (24 h) with GFs. CD34+ cells were stimulated with basic fibroblast growth factor (bFGF), stem cell factor/c-kit ligand (SCF), interleukin-3 (IL-3), IL-6, leukemia inhibitory factor (LIF), and granulocyte-monocyte colony stimulating factor (GM-CSF) alone or in combination in short-term serum-free liquid suspension cultures (LSC) immediately after irradiation and then assayed for clonogenic progenitors. DNA repair was evaluated by analysis of DNA strand breaks using the comet assay. Survival of CFU-GM, BFU-E, and CFU-Mix was determined and dose-response curves were fitted to the data. RESULTS: The radiobiological parameters (D[0] and n) showed significant GF(s) effects. Combination of IL-3 with IL-6, SCF or GM-CSF resulted in best survival for CFU-GM BFU-E and CFU-Mix, respectively. Combinations of three or more GFs did not increase the survival of clonogenic CD34+ cells compared to optimal two-factor combinations. The D[0] values for CFU-GM, BFU-E, and CFU-Mix ranged between 0.56-1.15, 0.41-2.24, and 0.56-1.29 Gy, respectively. As for controls, the curves remained strictly exponential, i.e., all survival curves were strictly exponential without any shoulder (extrapolation numbers n=1 for all tested GF(s). DNA repair capacity of CD34+ cells determined by comet assay, was measured before, immediately after irradiation, as well as 30 and 120 min after irradiation at 1 Gy. Notably, after irradiation the 2-h repair of cytokine-stimulated and unstimulated CD34+ cells was similar. CONCLUSION: Our data indicate that increased survival of irradiated CB CD34+ cells after short-term GF treatment is mediated through proliferative GF effects on the surviving fraction but not through improved DNA repair capacity.  相似文献   

18.
It is known that osteoblast precursor cells are found in the low-density mononuclear (LDMN) fraction of human bone marrow (BM) aspirates. The purpose of this study was to investigate whether CD34, a hematopoietic progenitor cell marker, is present on osteoblast progenitor cells. LDMN, CD34+, and CD34- cells were cultured under conditions that promote growth and differentiation of mineral-secreting osteoblasts in a limiting dilution manner. With LDMN cells, osteoblast progenitor cells were found at an average frequency of 1/36,000 cells. With CD34- cells, osteoblast progenitor frequency remained at an average of 1/33,000, similar to LDMN cells. With CD34+ selected cells, osteoblast progenitor frequency increased to an average of 1/5,000. This osteoblast progenitor frequency is maintained in sorted CD34+/CD38+ cells. The osteoblasts generated from CD34+ cells were morphologically normal, and expression of skeletal-specific alkaline phosphatase and osteonectin increased upon differentiation induced by dexamethasone (DEX) treatment. Ultrastructurally, these CD34+ cell-derived osteoblasts displayed osteoblast-specific features. Functionally, these CD34+ cell-derived osteoblasts differentiated with DEX treatment, increased the level of cyclic adenosine monophosphate in response to parathyroid hormone stimulation, increased the level of alkaline phosphatase activity, and increased mineral secretion. These results demonstrate that osteoblast progenitor cells are enriched in the CD34+ cell population from BM and that these progenitor cells can differentiate into functional osteoblasts in culture.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号