首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most neurodegenerative disorders, such as Alzheimer's (AD), Parkinson's, Huntington's and Creutzfeldt-Jakob disease, are characterised by the accumulation of insoluble filamentous aggregates known as amyloid. These pathologies share common pathways involving protein aggregation which can lead to fibril formation and amyloid plaques. The 4 kDa Abeta peptide (39-43 amino acids) derived from the proteolysis of the amyloid precursor protein is currently a validated target for therapy in AD. Both active and passive immunisation studies against Abeta are being trialled as potential AD therapeutic approaches. In this study, we have characterised engineered antibody fragments derived from the monoclonal antibody, WO-2 which recognises an epitope in the N-terminal region of Abeta (amino acids 2-8 of Abeta). A chimeric recombinant Fab (rFab) and single chain fragments (scFvs) of WO-2 were constructed and expressed in Escherichia coli. Rationally designed mutants to improve the stability of antibody fragments were also constructed. All antibody formats retained high affinity (K(D) approximately 8 x 10(-9) M) for the Abeta peptide, comparable with the intact parental IgG as measured by surface plasmon resonance. Likewise, all engineered fragments were able to: (i) prevent amyloid fibrillisation, (ii) disaggregate preformed Abeta(1-42) fibrils and (iii) inhibit Abeta(1-42) oligomer-mediated neurotoxicity in vitro as efficiently as the whole IgG molecule. These data indicate that the WO-2 antibody and its fragments have immunotherapeutic potential. The perceived advantages of using small Fab and scFv engineered antibody formats which lack the effector function include more efficient passage across the blood-brain barrier and minimising the risk of triggering inflammatory side reactions. Hence, these recombinant antibody fragments represent attractive candidates and safer formulations of passive immunotherapy for AD.  相似文献   

2.
[Figurre: see text]. Protein aggregation can be defined as the sacrifice of stabilizing intrachain contacts of the functional state that are replaced with interchain contacts to form non-functional states. The resulting aggregate morphologies range from amorphous structures without long-range order typical of nondisease proteins involved in inclusion bodies to highly structured fibril assemblies typical of amyloid disease proteins. In this Account, we describe the development and application of computational models for the investigation of nondisease and disease protein aggregation as illustrated for the proteins L and G and the Alzheimer's Abeta systems. In each case, we validate the models against relevant experimental observables and then expand on the experimental window to better elucidate the link between molecular properties and aggregation outcomes. Our studies show that each class of protein exhibits distinct aggregation mechanisms that are dependent on protein sequence, protein concentration, and solution conditions. Nondisease proteins can have native structural elements in the denatured state ensemble or rapidly form early folding intermediates, which offers avenues of protection against aggregation even at relatively high concentrations. The possibility that early folding intermediates may be evolutionarily selected for their protective role against unwanted aggregation could be a useful strategy for reengineering sequences to slow aggregation and increase folding yield in industrial protein production. The observed oligomeric aggregates that we see for nondisease proteins L and G may represent the nuclei for larger aggregates, not just for large amorphous inclusion bodies, but potentially as the seeds of ordered fibrillar aggregates, since most nondisease proteins can form amyloid fibrils under conditions that destabilize the native state. By contrast, amyloidogenic protein sequences such as Abeta 1-40,42 and the familial Alzheimer's disease (FAD) mutants favor aggregation into ordered fibrils once the free-energy barrier for forming a critical nucleus is crossed. However, the structural characteristics and oligomer size of the soluble nucleation species have yet to be determined experimentally for any disease peptide sequence, and the molecular mechanism of polymerization that eventually delineates a mature fibril is unknown. This is in part due to the limited experimental access to very low peptide concentrations that are required to characterize these early aggregation events, providing an opportunity for theoretical studies to bridge the gap between the monomer and fibril end points and to develop testable hypotheses. Our model shows that Abeta 1-40 requires as few as 6-10 monomer chains (depending on sequence) to begin manifesting the cross-beta order that is a signature of formation of amyloid filaments or fibrils assessed in dye-binding kinetic assays. The richness of the oligomeric structures and viable filament and fibril polymorphs that we observe may offer structural clues to disease virulence variations that are seen for the WT and hereditary mutants.  相似文献   

3.
Spontaneous aggregation of misfolded proteins typically results in the formation of morphologically and structurally different amyloid fibrils, protein aggregates that are strongly associated with various neurodegenerative disorders. Elucidation of the structural organization of amyloid aggregates is crucial to understanding their role in the onset and progression of these diseases. Using atomic force microscopy–infrared spectroscopy (AFM-IR), we investigated the structural organization of insulin fibrils. We found that insulin aggregation results in the formation of two structurally different fibril polymorphs. One polymorph has a β-sheet core surrounded by primarily unordered protein secondary structure. This polymorph has β-sheet-rich surface, whereas the surface of the other fibril polymorph is primarily composed of unordered protein. Using AFM-IR, we also revealed the structural organization of the insulin oligomers. Finally, we discovered a new pathway for amyloid fibril formation that is based on a fusion of several oligomers into a single fibril structure.  相似文献   

4.
Several amyloid-forming proteins are characterized by the presence of hydrophobic and highly amyloidogenic core sequences that play critical roles in the initiation and progression of amyloid fibril formation. Therefore targeting these sequences represents a viable strategy for identifying candidate molecules that could interfere with amyloid formation and toxicity of the parent proteins. However, the highly amyloidogenic and insoluble nature of these sequences has hampered efforts to develop high-throughput fibrillization assays. Here we describe the design and characterization of host-guest switch peptides that can be used for in vitro mechanistic and screening studies that are aimed at discovering aggregation inhibitors that target highly amyloidogenic sequences. These model systems are based on a host-guest system where the amyloidogenic sequence (guest peptide) is flanked by two beta-sheet-promoting (Leu-Ser)(n) oligomers as host sequences. Two host-guest peptides were prepared by using the hydrophobic core of Abeta comprising residues 14-24 (HQKLVFFAEDV) as the guest peptide with switch elements inserted within (peptide 1) or at the N and C termini of the guest peptide (peptide 2). Both model peptides can be triggered to undergo rapid self-assembly and amyloid formation in a highly controllable manner and their fibrillization kinetics is tuneable by manipulating solution conditions (for example, peptide concentration and pH). The fibrillization of both peptides reproduces many features of the full-length Abeta peptides and can be inhibited by known inhibitors of Abeta fibril formation. Our results suggest that this approach can be extended to other amyloid proteins and should facilitate the discovery of small-molecule aggregation inhibitors and the development of more efficacious anti-amyloid agents to treat and/or reverse the pathogenesis of neurodegenerative and systemic amyloid diseases.  相似文献   

5.
A clear understanding of the pathological mechanism of amyloid beta peptide (Abeta) 1-42, a currently unexplained process, would be of great significance for the discovery of novel drug targets for Alzheimer's disease (AD) therapy. To date, though, the elucidation of these Abeta1-42 dynamic events has been a difficult issue because of uncontrolled polymerization, which also poses a significant obstacle in establishing experimental systems with which to clarify the pathological function of Abeta1-42. We have recently developed chemical biology-oriented pH- or phototriggered "click peptide" isoform precursors of Abeta1-42, based on the "O-acyl isopeptide method", in which a native amide bond at a hydroxyamino acid residue, such as Ser, is isomerized to an ester bond, the target peptide subsequently being generated by an O-N intramolecular acyl migration reaction. These click peptide precursors did not exhibit any self-assembling character under physiological conditions, thanks to the presence of the one single ester bond, and were able to undergo migration to give the target Abeta1-42 in a quick and easy, one-way (so-called "click")conversion reaction. The use of click peptides could be a useful strategy to investigate the biological functions of Abeta1-42 in AD through inducible activation of Abeta1-42 self-assembly.  相似文献   

6.
Amyloid fibrils are found in association with at least two dozen fatal diseases. The tendency of numerous proteins to convert into amyloid-like fibrils poses fundamental questions for structural biology and for protein science in general. Among these are the following: What is the structure of the cross-beta spine, common to amyloid-like fibrils? Is there a sequence signature for proteins that form amyloid-like fibrils? What is the nature of the structural conversion from native to amyloid states, and do fibril-forming proteins have two distinct stable states, the native state and the amyloid state? What is the basis of protein complementarity, in which a protein chain can bind to itself? We offer tentative answers here, based on our own recent structural studies.  相似文献   

7.
Current views of the role of beta-amyloid (Abeta) peptide fibrils range from regarding them as the cause of Alzheimer's pathology to having a protective function. In the last few years, it has also been suggested that soluble oligomers might be the most important toxic species. In all cases, the study of the conformational properties of Abeta peptides in soluble form constitutes a basic approach to the design of molecules with "antiamyloid" activity. We have experimentally investigated the conformational path that can lead the Abeta-(1-42) peptide from the native state, which is represented by an alpha helix embedded in the membrane, to the final state in the amyloid fibrils, which is characterized by beta-sheet structures. The conformational steps were monitored by using CD and NMR spectroscopy in media of varying polarities. This was achieved by changing the composition of water and hexafluoroisopropanol (HFIP). In the presence of HFIP, beta conformations can be observed in solutions that have very high water content (up to 99 % water; v/v). These can be turned back to alpha helices simply by adding the appropriate amount of HFIP. The transition of Abeta-(1-42) from alpha to beta conformations occurs when the amount of water is higher than 80 % (v/v). The NMR structure solved in HFIP/H2O with high water content showed that, on going from very apolar to polar environments, the long N-terminal helix is essentially retained, whereas the shorter C-terminal helix is lost. The complete conformational path was investigated in detail with the aid of molecular-dynamics simulations in explicit solvent, which led to the localization of residues that might seed beta conformations. The structures obtained might help to find regions that are more affected by environmental conditions in vivo. This could in turn aid the design of molecules able to inhibit fibril deposition or revert oligomerization processes.  相似文献   

8.
Amyloid formation and accumulation of the amyloid beta-peptide (Abeta) in the brain is associated with Alzheimer's disease (AD) pathogenesis. Therefore, among the therapeutic approaches in development to fight the disease, the direct inhibition of the Abeta self-assembly process is currently widely investigated and is one of the most promising approaches. In this study we investigated the potential of a multimeric display of quinacrine derivatives, as compared to the monomer quinacrine, as a design principal for a novel class of inhibitors against Abeta fibril formation. The presented multimeric conjugate exhibits a cluster of four quinacrine derivatives on a rigid cyclopeptidic scaffold. Herein is reported the synthesis of the conjugate, together with the in vitro inhibitory evaluation of Abeta(1-40) fibrils using the thioflavin T fluorescence assay, and imaging with atomic force microscopy. Our data show that the multimeric compound inhibits Abeta(1-40) fibril formation with an IC(50) value of 20+/-10 microM, which contrasts with the nonactive monomeric analogue. This work suggests that assembling multiple copies of acridine moieties to a central scaffold, for multiple interactions, is a promising strategy for the engineering of inhibitors against Abeta fibril formation.  相似文献   

9.
The amyloid fibril is a misfolded and undesirable state for proteins that has been proposed to be a causative agent for a variety of fatal diseases known as amyloid diseases, such as Alzheimer's and prion diseases. However, the fibril has a highly ordered tertiary structure in which numerous beta-strand polypeptide chains align in a regular pattern. Thus, this kind of fibril has the potential to be engineered into proteinaceous materials. Amyloid fibrils of misfolded proteins primarily comprise a single polypeptide species, that is, the self-assembly is homogeneous. We here found that three or four designed peptides can assemble heterogeneously and cooperatively into amyloid fibrils, a process accompanied by a drastic secondary structural transition from alpha helix to beta sheet. Heterogeneous assembly into fibrils is accomplished by complementary electrostatic interactions between three or four peptide species, each of which is not able to self-assemble homogeneously. These findings will lead to a novel way to study the molecular details of amyloid formation and also to design beta-sheet peptidyl materials.  相似文献   

10.
A variety of neurodegenerative diseases are associated with amyloid plaques, which begin as soluble protein oligomers but develop into amyloid fibrils. Our incomplete understanding of this process underscores the need to decipher the principles governing protein aggregation. Mechanisms of in vivo amyloid formation involve a number of coconspirators and complex interactions with membranes. Nevertheless, understanding the biophysical basis of simpler in vitro amyloid formation is considered important for discovering ligands that preferentially bind regions harboring amyloidogenic tendencies. The determination of the fibril structure of many peptides has set the stage for probing the dynamics of oligomer formation and amyloid growth through computer simulations. Most experimental and simulation studies, however, have been interpreted largely from the perspective of proteins: the role of solvent has been relatively overlooked in oligomer formation and assembly to protofilaments and amyloid fibrils. In this Account, we provide a perspective on how interactions with water affect folding landscapes of amyloid beta (Aβ) monomers, oligomer formation in the Aβ16-22 fragment, and protofilament formation in a peptide from yeast prion Sup35. Explicit molecular dynamics simulations illustrate how water controls the self-assembly of higher order structures, providing a structural basis for understanding the kinetics of oligomer and fibril growth. Simulations show that monomers of Aβ peptides sample a number of compact conformations. The formation of aggregation-prone structures (N*) with a salt bridge, strikingly similar to the structure in the fibril, requires overcoming a high desolvation barrier. In general, sequences for which N* structures are not significantly populated are unlikely to aggregate. Oligomers and fibrils generally form in two steps. First, water is expelled from the region between peptides rich in hydrophobic residues (for example, Aβ16-22), resulting in disordered oligomers. Then the peptides align along a preferred axis to form ordered structures with anti-parallel β-strand arrangement. The rate-limiting step in the ordered assembly is the rearrangement of the peptides within a confining volume. The mechanism of protofilament formation in a polar peptide fragment from the yeast prion, in which the two sheets are packed against each other and create a dry interface, illustrates that water dramatically slows self-assembly. As the sheets approach each other, two perfectly ordered one-dimensional water wires form. They are stabilized by hydrogen bonds to the amide groups of the polar side chains, resulting in the formation of long-lived metastable structures. Release of trapped water from the pore creates a helically twisted protofilament with a dry interface. Similarly, the driving force for addition of a solvated monomer to a preformed fibril is water release; the entropy gain and favorable interpeptide hydrogen bond formation compensate for entropy loss in the peptides. We conclude by offering evidence that a two-step model, similar to that postulated for protein crystallization, must also hold for higher order amyloid structure formation starting from N*. Distinct water-laden polymorphic structures result from multiple N* structures. Water plays multifarious roles in all of these protein aggregations. In predominantly hydrophobic sequences, water accelerates fibril formation. In contrast, water-stabilized metastable intermediates dramatically slow fibril growth rates in hydrophilic sequences.  相似文献   

11.
A mirror image phage display approach was used to identify novel and highly specific ligands for Alzheimer's disease amyloid peptide Abeta(1-42). A randomized 12-mer peptide library presented on M13 phages was screened for peptides with binding affinity for the mirror image of Abeta(1-42). After four rounds of selection and amplification the peptides were enriched with a dominating consensus sequence. The mirror image of the most representative peptide (D-pep) was shown to bind Abeta(1-42) with a dissociation constant in the submicromolar range. Furthermore, in brain tissue sections derived from patients that suffered from Alzheimer's disease, amyloid plaques and leptomeningeal vessels containing Abeta amyloid were stained specifically with a fluorescence-labeled derivative of D-pep. Fibrillar deposits derived from other amyloidosis were not labeled by D-pep. Possible applications of this novel and highly specific Abeta ligand in diagnosis and therapy of Alzheimer's disease are discussed.  相似文献   

12.
In this review we discuss our efforts in using protein nanowires (amyloid fibrils) as structural templates for use in organic electronics applications, mainly focusing on organic light-emitting diodes (OLEDs). We discuss different ways of functionalising amyloid fibrils. In one method, the amyloid fibril is used to organise luminescent polymers. We also discuss an alternative preparative method, resulting in amyloid-like materials functionalised with phosphorescent organometallic complexes. We discuss the incorporation of such materials in organic electronics devices, such as OLEDs. When amyloid fibrils are integrated into the OLED active layer, consisting of an electroluminescent blue-emitting polyfluorene, the efficiency of the device increases by a factor of 10. Furthermore, when amyloid fibrils incorporating phosphorescent metal complexes are used, the phosphorescent guest functions more efficiently than in the corresponding case where naked metal complexes are used. By preparing amyloid fibrils incorporating green- and red-emitting phosphorescent complexes, and combining these with blue-emitting polyfluorene, we can fabricate devices for white-light emission. The origin of the effects of the biomaterial on device performance is discussed.  相似文献   

13.
The formation of fibrillar aggregates of the amyloid beta peptide (Aβ) in the brain is one of the hallmarks of Alzheimer’s disease (AD). A clear understanding of the different aggregation steps leading to fibrils formation is a keystone in therapeutics discovery. In a recent study, we showed that Aβ40 and Aβ42 form dynamic micellar aggregates above certain critical concentrations, which mediate a fast formation of more stable oligomers, which in the case of Aβ40 are able to evolve towards amyloid fibrils. Here, using different biophysical techniques we investigated the role of different fractions of the Aβ aggregation mixture in the nucleation and fibrillation steps. We show that both processes occur through bimolecular interplay between low molecular weight species (monomer and/or dimer) and larger oligomers. Moreover, we report here a novel self-catalytic mechanism of fibrillation of Aβ40, in which early oligomers generate and deliver low molecular weight amyloid nuclei, which then catalyze the rapid conversion of the oligomers to mature amyloid fibrils. This fibrillation catalytic activity is not present in freshly disaggregated low-molecular weight Aβ40 and is, therefore, a property acquired during the aggregation process. In contrast to Aβ40, we did not observe the same self-catalytic fibrillation in Aβ42 spheroidal oligomers, which could neither be induced to fibrillate by the Aβ40 nuclei. Our results reveal clearly that amyloid fibrillation is a multi-component process, in which dynamic collisions between different interacting species favor the kinetics of amyloid nucleation and growth.  相似文献   

14.
Significant research on Alzheimer’s disease (AD) has demonstrated that amyloid β (Aβ) oligomers are toxic molecules against neural cells. Thus, determining the generation mechanism of toxic Aβ oligomers is crucial for understanding AD pathogenesis. Aβ fibrils were reported to be disaggregated by treatment with small compounds, such as epigallocatechin gallate (EGCG) and dopamine (DA), and a loss of fibril shape and decrease in cytotoxicity were observed. However, the characteristics of intermediate products during the fibril disaggregation process are poorly understood. In this study, we found that cytotoxic Aβ aggregates are generated during a moderate disaggregation process of Aβ fibrils. A cytotoxicity assay revealed that Aβ fibrils incubated with a low concentration of EGCG and DA showed higher cytotoxicity than Aβ fibrils alone. Atomic force microscopy imaging and circular dichroism spectrometry showed that short and narrow protofilaments, which were highly stable in the β-sheet structure, were abundant in these moderately disaggregated samples. These results indicate that toxic Aβ protofilaments are generated during disaggregation from amyloid fibrils, suggesting that disaggregation of Aβ fibrils by small compounds may be one of the possible mechanisms for the generation of toxic Aβ aggregates in the brain.  相似文献   

15.
The initial transition of amyloid beta (1-42) (Abeta42) soluble monomers/small oligomers from unordered/alpha-helix to a beta-sheet-rich conformation represents a suitable target to design new potent inhibitors and to obtain effective therapeutics for Alzheimer's disease. Under optimized conditions, this reliable and reproducible CD kinetic study showed a three-step sigmoid profile that was characterized by a lag phase (prevailing unordered/alpha-helix conformation), an exponential growth phase (increasing beta-sheet secondary structure) and a plateau phase (prevailing beta-sheet secondary structure). This kinetic analysis brought insight into the inhibitors' mechanism of action. In fact, an increase in the duration of the lag phase can be related to the formation of an inhibitor-Abeta complex, in which the non-amyloidogenic conformation is stabilized. When the exponential rate is affected exclusively, such as in the case of Congo red and tetracycline, then the inhibitor affinity might be higher for the pleated beta-sheet structure. Finally, by adding the inhibitor at the end of the exponential phase, the soluble protofibrils can be disrupted and the Abeta amyloidogenic structure can revert into monomers/small oligomers. Congo red and tetracycline preferentially bind to amyloid in the beta-sheet conformation because both decreased the slope of the exponential growth, even if to a different extent, whereas no effect was observed for tacrine and galantamine. Some very preliminary indications can be derived about the structural requirements for binding to nonamyloidogenic or beta-sheet amyloid secondary structure for the development of potent antiaggregating agents. On these premises, memoquin, a multifunctional molecule that was designed to become a drug candidate for the treatment of Alzheimer's disease, was investigated under the reported circular dichroism assay and its anti-amyloidogenic mechanism of action was elucidated.  相似文献   

16.
The soluble, globular, alpha-helix-rich peptide SipA(446-684) is a domain of a bacterial protein that binds to mammalian filamentous-actin and re-arranges the host cell's cytoskeleton. We show that adding two copies of NHBP-1, a carbon nanomaterial binding peptide, to its N-terminal can induce SipA(446-684) to polymerize and assume a fibrillar structure under physiological conditions. The fibrils formed showed thioflavine T and Congo red staining profiles that are characteristic of and specific for amyloid-like structures. The alpha-helical structure of the globular protein was retained in the fibrils, suggesting the appended NHBP-1 sequence plays a key role in the formation of cross-beta spines within the fibrils. Consistent with that idea, we observed that a synthetic NHBP-1 peptide can form an amyloid-like structure under appropriate conditions. Thus, our findings add a new subtype of amyloid-like structure formation and suggest this method of assembly could be exploited in nano-biotechnology.  相似文献   

17.
Misfolding and aggregation of amyloid β1–42 peptide (Aβ1–42) play a central role in the pathogenesis of Alzheimer's disease (AD). Targeting the highly cytotoxic oligomeric species formed during the early stages of the aggregation process represents a promising therapeutic strategy to reduce the toxicity associated with Aβ1–42. Currently, the thioflavin T (ThT) assay is the only established spectrofluorometric method to screen aggregation inhibitors. The success of the ThT assay is that it can detect Aβ1–42 aggregates with high β-sheet content, such as protofibrils or fibrils, which appear in the late aggregation steps. Unfortunately, by using the ThT assay, the detection of inhibitors of early soluble oligomers that present a low β-sheet character is challenging. Herein, a new, facile, and robust boron-dipyrromethene (BODIPY) real-time assay suitable for 96-well plate format, which allows screening of compounds as selective inhibitors of the formation of Aβ1–42 oligomers, is reported. These inhibitors decrease the cellular toxicity of Aβ1–42, although they fail in the ThT assay. The findings have been confirmed and validated by structural analysis and cell viability assays under comparable experimental conditions. It is demonstrated that the BODIPY assay is a convenient method to screen and discover new candidate compounds that slow down or stop the pathological early oligomerization process and are active in the cellular assay. Therefore, it is a suitable complementary screening method of the current ThT assay.  相似文献   

18.
Amyloidoses comprise a class of diseases characterized pathologically by the presence of deposits of fibrillar, aberrantly folded proteins, known as amyloids. Historically, these deposits were considered the key factors causing disease. However, recent evidence suggests that soluble protein oligomers, which are precursors for amyloid fibrils, are the primary toxic effectors responsible for the disease process. Understanding the mechanism by which these oligomers exert their toxicity requires knowledge of the structure, kinetics, and thermodynamics of their formation and conversion into larger assemblies. Such studies have been difficult due to the metastable nature of the oligomers. For the amyloid beta-protein (Abeta), a consensus about the size and relative abundance of small oligomers has not been achieved. We describe here the application of the method Photoinduced Cross-Linking of Unmodified Proteins (PICUP) to the study of Abeta oligomerization. This approach distinguishes oligomerization patterns of amyloidogenic and nonamyloidogenic proteins, allows quantification of each component in oligomer mixtures, and provides a means of correlating primary structure modifications with assembly characteristics. PICUP thus is a powerful tool for the investigation of small, metastable protein oligomers. The method provides essential insights into the factors that control the assembly of pathogenic protein oligomers, facilitating efforts toward the development of therapeutic agents.  相似文献   

19.
The key pathogenic event in the onset of Alzheimer's disease (AD) is the aggregation of beta-amyloid (Abeta) peptides into toxic aggregates. Molecules that interfere with this process might act as therapeutic agents for the treatment of AD. The amino acid residues 16-20 (KLVFF) are known to be essential for the aggregation of Abeta. In this study, we have used a first-generation dendrimer as a scaffold for the multivalent display of the KLVFF peptide. The effect of four KLVFF peptides attached to the dendrimer (K(4)) on Abeta aggregation was compared to the effect of monomeric KLVFF (K(1)). Our data show that K(4) very effectively inhibits the aggregation of low-molecular-weight and protofibrillar Abeta(1-42) into fibrils, in a concentration-dependent manner, and much more potently than K(1). Moreover, we show that K(4) can lead to the disassembly of existing aggregates. Our data lead us to propose that conjugates that bear multiple copies of KLVFF might be useful as therapeutic agents for the treatment of Alzheimer's disease.  相似文献   

20.
The three-dimensional structure of the Alzheimer's disease Abeta1-42 peptide was predicted by sequence homology, threading approaches and by experimental observations. The Abeta molecule displayed a Greek key motif with four antiparallel beta-strands. To shield thermodynamically unfavorable domains, two Abeta molecules interact with each other to generate a beta-barrel structure with a hydrophilic surface and a hydrophobic core. The N-terminal domains of the dimer form crevices into which the non-polar C-termini are accommodated to yield a globular structure 27x32 A in diameter. Alternatively, the C-terminal domains of two opposing dimers could be extended to form an antiparallel beta- sheet. The stacking of these building blocks generates a helical protofilament. To create a thermodynamically more favorable structure, three protofilaments associate into a right-handed triple helix with a hydrophobic beta-sheet completely surrounded by the hydrophilic beta- barrels made of residues 1-28. Two triple helical strands can further associate into a right-handed amyloid filament. Although our model did not meet all the expected criteria, it nevertheless exhibited a series of naturally disposed structural features, revealed by other biophysical studies utilizing synthetic Abeta peptides. These characteristics are of functional significance in terms of Abeta- topology, fibril formation and cytotoxicity. The model also suggests that Abeta may not exist in a thermodynamically stable conformation, but rather as an ensemble of metastable dimeric structures some of which are capable of generating an extended C-terminal antiparallel beta-sheet essential in the promotion of fibrillogenesis.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号