首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various adsorbent materials have been reported in the literature for heavy metal removal. We have developed a novel approach to obtain high metal sorption capacity utilising cysteine containing adsorbent. Metal complexing aminoacid-ligand cysteine was immobilised onto poly(hydroxyethylmethacrylate) (PHEMA) microbeads. PHEMA-cysteine affinity microbeads containing 0.318 mmol cysteine/g were used in the removal of heavy metal ions (i.e. copper, lead and cadmium) from aqueous media containing different amounts of these ions (50–400 mg/l for Pb(II) and Cd(II), 25–60 mg/l for Cu(II)) and at different pH values (4.0–7.0). The maximum adsorption capacity of heavy metal ions onto the cysteine-containing microbeads under non-competitive conditions were 0.259 mmol/g for Pb(II), 0.330 mmol/g for Cd(II) and 0.229 mmol/g for Cu(II). The affinity order was observed as follows: Cd(II)>Pb(II)>Cu(II). The competitive adsorption capacities of the heavy metals were 0.260 mmol/g for Cd(II) and 0.120 mmol/g for Cu(II). Pb(II) adsorption onto cysteine-immobilised microbeads was zero under competitive conditions. The affinity order was as follows: Cd(II)>Cu(II)>Pb(II). The formation constants of cysteine–metal ion complexes have been investigated applying the method of Ruzic. The calculated value of stability constants were 1.75×104 l/mol for Pb(II)–cysteine complex and 4.35×104 l/mol for Cd(II)–cysteine complex and 1.39×104 l/mol for Cu(II)–cysteine complex. PHEMA microbeads carrying cysteine can be regenerated by washing with a solution of hydrochloric acid (0.05 M). The maximum desorption ratio was greater than 99%. These PHEMA microbeads are suitable for repeated use for more than three adsorption–desorption cycles without considerable loss in adsorption capacity.  相似文献   

2.
Metal‐chelating membranes have advantages as adsorbents in comparison with conventional beads because they are not compressible and they eliminate internal diffusion limitations. The aim of this study was to explore in detail the performance of poly(2‐hydroxyethyl methacrylate–methacryloylamidohistidine) [poly(HEMA–MAH)] membranes for the removal of three toxic heavy‐metal ions—Cd(II), Pb(II), and Hg(II)—from aquatic systems. The poly(HEMA–MAH) membranes were characterized with scanning electron microscopy and 1H‐NMR spectroscopy. The adsorption capacity of the poly(HEMA–MAH) membranes for the selected heavy‐metal ions from aqueous media containing different amounts of these ions (30–500 mg/L) and at different pH values (3.0–7.0) was investigated. The adsorption capacity of the membranes increased with time during the first 60 min and then leveled off toward the equilibrium adsorption. The maximum amounts of the heavy‐metal ions adsorbed were 8.2, 31.5, and 23.2 mg/g for Cd(II), Pb(II), and Hg(II), respectively. The competitive adsorption of the metal ions was also studied. When the metal ions competed, the adsorbed amounts were 2.9 mg of Cd(II)/g, 14.8 mg of Pb(II)/g, and 9.4 mg of Hg(II)/g. The poly(HEMA–MAH) membranes could be regenerated via washing with a solution of nitric acid (0.01M). The desorption ratio was as high as 97%. These membranes were suitable for repeated use for more than three adsorption/desorption cycles with negligible loss in the adsorption capacity. The stability constants for the metal‐ion/2‐methacryloylamidohistidine complexes were calculated to be 3.47 × 106, 7.75 × 107, and 2.01 × 107 L/mol for Cd(II), Pb(II), and Hg(II) ions, respectively, with the Ruzic method. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1213–1219, 2005  相似文献   

3.
The adsorption of Pb(II) and Cd(II) ions with crosslinked carboxymethyl starch (CCS) was investigated as function of the solution pH, contact time, initial metal‐ion concentration, and temperature. Isotherm studies revealed that the adsorption of metal ions onto CCS better followed the Langmuir isotherm and the Dubinin–Radushkevich isotherm with adsorption maximum capacities of about 80.0 and 47.0 mg/g for Pb(II) and Cd(II) ions, respectively. The mean free energies of adsorption were found to be between 8 and 16 kJ/mol for Pb(II) and Cd(II) ions; this suggested that the adsorption of Pb(II) and Cd(II) ions onto CCS occurred with an ion‐exchange process. For two‐target heavy‐metal ion adsorption, a pseudo‐second‐order model and intraparticle diffusion seem significant in the rate‐controlling step, but the pseudo‐second‐order chemical reaction kinetics provide the best correlation for the experimental data. The enthalpy change for the process was found to be exothermic, and the ΔSθ values were calculated to be negative for the adsorption of Pb(II) and Cd(II) ions onto CCS. Negative free enthalpy change values indicated that the adsorption process was feasible. The studies of the kinetics, isotherm, and thermodynamics indicated that the adsorption of CCS was more effective for Pb(II) ions than for Cd(II) ions. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Poly(methyl methacrylate) (PMMA) microspheres carrying poly(ethylene imine) (PEI) were prepared for the removal of heavy‐metal ions (copper, cadmium, and lead) from aqueous solutions with different amounts of these ions (50–600 mg/L) and different pH values (3.0–7.0). Ester groups in the PMMA structures were converted to imine groups in a reaction with PEI as a metal‐chelating ligand in the presence of NaH. The adsorption of heavy‐metal ions on the unmodified PMMA microspheres was very low [3.6 μmol/g for Cu(II), 4.6 μmol/g for Cd(II), and 4.2 μmol/g for Pb(II)]. PEI immobilization significantly increased the heavy‐metal adsorption [0.224 mmol/g for Cu(II), 0.276 mmol/g for Cd(II), and 0.126 mmol/g for Pb(II)]. The affinity order of adsorption (in moles) was Cd(II) > Cu(II) > Pb(II). The adsorption of heavy‐metal ions increased with increasing pH and reached a plateau value around pH 5.5. Their adsorption behavior was approximately described with the Langmuir equation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 197–205, 2001  相似文献   

5.
Magnetic polymethylmethacrylate (mPMMA) microbeads carrying ethylene diamine (EDA) were prepared for the removal of heavy metal ions (i.e., copper, lead, cadmium, and mercury) from aqueous solutions containing different amount of these ions (5–700 mg/L) and at different pH values (2.0–8.0). Adsorption of heavy metal ions on the unmodified mPMMA microbeads was very low (3.6 μmol/g for Cu(II), 4.2 μmol/g for Pb(II), 4.6 μmol/g for Cd(II), and 2.9 μmol/g for Hg(II)). EDA‐incorporation significantly increased the heavy metal adsorption (201 μmol/g for Cu(II), 186 μmol/g for Pb(II), 162 μmol/g for Cd(II), and 150 μmol/g for Hg(II)). Competitive adsorption capacities (in the case of adsorption from mixture) were determined to be 79.8 μmol/g for Cu(II), 58.7 μmol/g for Pb(II), 52.4 μmol/g for Cd(II), and 45.3 μmol/g for Hg(II). The observed affinity order in adsorption was found to be Cu(II) > Pb(II) > Cd(II) > Hg(II) for both under noncompetitive and competitive conditions. The adsorption of heavy metal ions increased with increasing pH and reached a plateau value at around pH 5.0. The optimal pH range for heavy‐metal removal was shown to be from 5.0 to 8.0. Desorption of heavy‐metal ions was achieved using 0.1 M HNO3. The maximum elution value was as high as 98%. These microbeads are suitable for repeated use for more than five adsorption‐desorption cycles without considerable loss of adsorption capacity. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 81–89, 2000  相似文献   

6.
《分离科学与技术》2012,47(6):1245-1254
Abstract

In this study, Poly(N,N dimethyl‐amino ethylmethacrylate) (Poly(DMAEMA)) hydrogels with varying compositions were prepared in the form of rods by irradiating ternary mixtures of N,N‐dimethylamino ethylmethacrylate/ethyleneglycoldimethacrylate/water with gamma rays at ambient temperature. Swelling studies of poly (DMAEMA) hydrogels were performed at different pH values and maximum swelling values reached at pH 2. The adsorption characteristics of Pb(II), Cd(II), Ni(II), Zn(II), Cu(II), and Co(II) ions to poly(N,N dimethylamino ethylmethacrylate) hydrogels were investigated by a batch process. The order of affinity based on amount of metal ion uptake was found as follows: Cu(II)>Zn(II)?Co(II)>Pb(II) >> Ni(II)>Cd(II). In the adsorption studies of Cu(II), Zn(II), Co(II), Pb(II), Ni(II), and Cd(II) ions the Langmuir type adsorption isotherms were observed for all gel systems.  相似文献   

7.
The aim of this study was to investigate in detail the performance for removal of heavy metal ions of beads composed of poly(2‐hydroxyethyl methacrylate) (pHEMA) to which N‐methacryloylhistidine (MAH) was copolymerized. The metal‐complexing ligand MAH was synthesized by using methacryloyl chloride and histidine. Spherical beads with an average size of 150–200 μm were obtained by the radical suspension polymerization of MAH and HEMA conducted in an aqueous dispersion medium. Owing to the reasonably rough character of the bead surface, p(HEMA‐MAH) beads had a specific surface area of 17.6 m2/g. The synthesized MAH monomer was characterized by NMR; p(HEMA‐MAH) beads were characterized by swelling studies, FTIR and elemental analysis. The p(HEMA‐MAH) beads with a swelling ratio of 65%, and containing 1.6 mmol MAH/g, were used in the adsorption/desorption experiments. Adsorption capacity of the beads for the selected metal ions, i. e., Cu(II), Cd(II), Cr(III), Hg(II) and Pb(II), were investigated in aqueous media containing different amounts of these ions (10–750 mg/L) and at different pH values (3.0–7.0). Adsorption equilibria were established in about 20 min. The maximum adsorption capacities of the p(HEMA‐MAH) beads were 122.7 mg/g for Cu(II), 468.8 mg/g for Cr(III), 639.4 mg/g for Cd(II), 714.1 mg/g for Pb(II) and 1 234.4 mg/g for Hg(II). pH significantly affected the adsorption capacity of MAH incorporated beads. The chelating beads can be easily regenerated by 0.1 M HNO3 with high effectiveness. These features make p(HEMA‐MAH) beads a potential candidate for heavy metal removal at high capacity.  相似文献   

8.
An interpenetration network (IPN) was synthesized from 2‐hydroxyethyl methacrylate (HEMA) and chitosan, p(HEMA/chitosan) via UV‐initiated photo‐polymerization. The selectivity to different heavy metal ions viz Cd(II), Pb(II), and Hg(II) to the IPN membrane has been investigated from aqueous solution using bare pHEMA membrane as a control system. Removal efficiency of metal ions from aqueous solution using the IPN membranes increased with increasing chitosan content and initial metal ions concentrations, and the equilibrium time was reached within 60 min. Adsorption of all the tested heavy metal ions on the IPN membranes was found to be pH dependent and maximum adsorption was obtained at pH 5.0. The maximum adsorption capacities of the IPN membrane for Cd(II), Pb(II), and Hg(II) were 0.063, 0.179, and 0.197 mmol/g membrane, respectively. The adsorption of the Cd(II), Hg(II), and Pb(II) metal ions on the bare pHEMA membrane was not significant. When the heavy metal ions were in competition, the amounts of adsorbed metal ions were found to be 0.035 mmol/g for Cd(II), 0.074 mmol/g for Hg(II), and 0.153 mmol/g for Pb(II), the IPN membrane is significantly selective for Pb(II) ions. The stability constants of IPN membrane–metal ions complexes were calculated by the method of Ruzic. The results obtained from the kinetics and isotherm studies showed that the experimental data for the removal of heavy metal ions were well described with the second‐order kinetic equations and the Langmuir isotherm model. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
A dye ligand Cibacron Blue F3GA, was covalently coupled with polyhydroxyethylmethacrylate (PHEMA) microbeads in the 150–200 μm particle size range. The sorbent carrying 22.3 μmol Cibacron Blue F3GA per gram of polymer was then used to remove Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions in a packed-bed column system. Heavy metal ion adsorption capacity of the column was investigated as a function of heavy metal ion-bearing solution flow rate and the inlet heavy metal ion concentration. The maximum metal ion uptake values found were: 80.60, 96.98, 78.36, 103.98 μmol/g polymer for Pb(II), Cd(II), Cu(II) and Zn(II), respectively. The heavy metal adsorption capacity of the microbeads decreased with an increase in the circulation rate of aqueous solution. The order of affinity based on molar uptake was Zn(II)>Cd(II)>Pb(II)>Cu(II). Removal percentages of heavy metals related to flow time were determined for different flow rates and initial metal ion concentrations. It was observed that PHEMA microbeads carrying Cibacron Blue F3GA can be regenerated by washing with a solution of nitric acid (0.05 M). The desorption ratio was as high as 98.5%.  相似文献   

10.
《分离科学与技术》2012,47(18):2896-2905
ABSTRACT

Heavy metal ion pollution has become a serious problem. In this paper, a new type of adsorbent, reduced graphene oxide grafted by 4-sulfophenylazo groups (RGOS), was synthesized to adsorb heavy metal ions in an aqueous solution via two kinds of adsorption modes, ion exchange and coordination. The maximum adsorption capacities of the RGOS for Pb(II), Cu(II), Ni(II), Cd(II) and Cr(III) were 689, 59, 66, 267 and 191 mg/g, respectively. Adsorption equilibrium time of RGOS for heavy metal ions is no more than 10 min. Adsorption mechanism was supposed based on elemental analyses, adsorption data, and Fourier transform infrared spectra.  相似文献   

11.
《分离科学与技术》2012,47(12):1984-1993
The uniform porous and continuous phase lead (II) adsorbent hydrogel, was prepared by copolymerizing 2-hydroxyethyl methacrylate (HEMA), acrylic acid (AAc), and N,N′-methylenebisacrylamide (MBAAm), with n-vinyl imidazole (VIM). A series of hydrogels, including different ratios of VIM, were prepared by photopolymerization and characterized. The influence of the uptake conditions such as pH, functional monomer percent, contact time, initial feed concentration, and foreign metal ions on the metal ion binding capacity of hydrogel, were also tested. The selective chelation of heavy metal ions from synthetic wastewater was also studied. The affinity order on molar basis was observed as follows: Pb (II) > Zn (II) > Cd (II). Chelation behavior of heavy metal ions could be modelled using both the Langmuir and Freundlich isotherms and it was seen that the Langmuir isotherm model was the best fit for the adsorption of Pb (II) ions in P(VIM/AAc/HEMA) hydrogel. Moreover, the limits of detection and the quantification values were determined. Regeneration of the hydrogels was easily performed with 1 M HCl and the same hydrogel can be reused five times almost without any loss of adsorption capacity. All these features make P(VIM/AAc/HEMA) hydrogels potential candidate adsorbent for heavy metal removal.  相似文献   

12.
A novel Pb(II) ion‐imprinted chelating nanofibers (nIIP), synthesized by combining electrospinning with surface ion imprinting technique, was reported in this study. nIIP was characterized with Fourier transmission infrared spectrometry and scanning electron microscopy, respectively. The performance of nIIP for Pb(II) sorption was conducted through a batch adsorption experiments. Experimental data showed that adsorption capacity of nIIP was much higher than that of non‐ion imprinted chelating acrylic microfibers (mNIP) derived from commercial available acrylic microfibers, and adsorption behaviors agreed well with pseudo‐second‐order kinetic and Langmuir isotherm model. The values of Gibbs free energy change derived from experimental data suggested that the adsorption Pb(II) on nIIP is spontaneous and favorable at high temperature. In addition, nIIP had the highest selectivity among three tested fibrous adsorbents for Pb(II) from binary metal solution, the selectivity coefficients for Pb(II) from binary metal solution of Pb(II)/Cu(II), Pb(II)/Ni(II), and Pb(II)/Cd(II) onto nIIP were 47, 101, and 162, respectively. Besides, a forty adsorption/desorption cycles revealed that nIIP was a promising recyclable adsorbent. In conclusion, the novel nIIP is a highly effective adsorbent for enrichment and separation of Pb(II) in the presence of competitive ions in aqueous solution, and it is potential to be applied for recovering metals from heavy metal polluted industrial wastewater such as Pb(II)/Cd(II), Pb(II)/Ni(II), and Pb(II)/Cu(II) polluted wastewater. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41507.  相似文献   

13.
The present investigation was undertaken to evaluate the effectiveness of a new adsorbent prepared from coconut coir pith (CP), a coir industry‐based lignocellulosic residue in removing metal ions from aqueous solutions. The adsorbent (PGCP‐COOH) having a carboxylate functional group at the chain end was prepared by grafting polyacrylamide onto CP using potassium peroxydisulphate as an initiator and in the presence of N,N′‐methylenebisacrylamide as a crosslinking agent. The adsorbent was characterized by infrared (IR) spectroscopy, thermogravimetry (TG), X‐ray diffraction (XRD) patterns, scanning electron microscopy (SEM), and potentiometric titration. The adsorbent exhibits very high adsorption potential for the removal of Pb(II), Hg(II), and Cd(II) ions from aqueous solutions. The optimum pH range for metal ion removal was found to be 6.0–8.0. The adsorption process follows a pseudo‐second‐order kinetic model. The adsorption capacities for Hg(II), Pb(II), and Cd(II) calculated using the Langmuir isotherm equation were 254.52, 189.49, and 63.72 mg g?1, respectively. Adsorption isotherm experiments were also conducted for comparison with a commercial carboxylate form cation exchanger. Different industry wastewater samples were treated by the PGCP‐COOH to demonstrate its efficiency in removing heavy metals from wastewater. The reusability of the PGCP‐COOH was also demonstrated using 0.2M HCl. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3670–3681, 2007  相似文献   

14.
An aminothiourea chitosan modified magnetic biochar composite (TMBC) was prepared for the efficient removal of Cd(II) from wastewater. The synthesized materials were characterized, and the detailed adsorption mechanisms and thermodynamics were studied. The adsorption experiments revealed that TMBC had a higher affinity for Cd(II) than the magnetic biochar composite, raw biochar, and other carbon‐based adsorbents did. The Cd(II) adsorption process fit the pseudo‐second‐order kinetic model, and the maximum adsorption capacities on the basis of the Langmuir model were 93.72, 121.9, and 137.3 mg/g at 298, 308, and 318 K, respectively. The practical efficacy of the adsorbent was also tested with a real mine water. The metal‐ion‐loaded TMBC could be conveniently collected by a magnet and could be easily regenerated with adsorption efficiencies up to 84% after five adsorption–desorption cycles. The as‐prepared TMBC might be a promising adsorbent for the treatment of heavy‐metal‐ion‐contaminated water or highly mineralized mine water. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46239.  相似文献   

15.
《分离科学与技术》2012,47(12):2685-2710
Abstract

The present study deals with the competitive adsorption of cadmium (Cd(II)) and zinc (Zn(II)) ions onto bagasse fly ash (BFA) from binary systems. BFA is a waste obtained from the bagasse‐fired boilers of sugar mills. The initial pH≈6.0 is found to be the optimum for the individual removal of Cd(II) and Zn(II) ions by BFA. The equilibrium adsorption data were obtained at different initial concentrations (C 0 = 10–100 mg/l), 5 h contact time, 30°C temperature, BFA dosage of 10 mg/l at pH 0 = 6. The Redlich–Peterson (R–P) and the Freundlich models represent the single ion equilibrium adsorption data better than the Langmuir model. The adsorption capacities in the binary‐metal mixtures are in the order Zn(II)>Cd(II) and is in agreement with the single‐component adsorption data. The equilibrium metal removal decreases with increasing concentrations of the other metal ion and the combined action of Cd(II) and Zn(II) ions on BFA is found to be antagonistic. Equilibrium isotherms for the binary adsorption of Cd(II) and Zn(II) ions on BFA have been analyzed by non‐modified Langmuir, modified Langmuir, extended‐Langmuir, Sheindorf–Rebuhn–Sheintuch (SRS), non‐modified R–P and modified R–P adsorption models. The isotherm model fitting has been done by minimizing the Marquardt's percent standard deviation (MPSD) error function using MS Excel. The SRS model satisfactory fits for most of the adsorption equilibrium data of Cd(II) and Zn(II) ions onto BFA.  相似文献   

16.
We prepared poly(ethylene glycol dimethacrylate–1‐vinyl‐1,2,4‐triazole) [poly(EGDMA–VTAZ)] beads (average diameter = 150–200 μm) by copolymerizing ethylene glycol dimethacrylate (EGDMA) with 1‐vinyl‐1,2,4‐triazole (VTAZ). The copolymer composition was characterized by elemental analysis and found to contain five EGDMA monomer units for each VTAZ monomer unit. The poly(EGDMA–VTAZ) beads had a specific surface area of 65.8 m2/g. Poly(EGDMA–VTAZ) beads were characterized by Fourier transform infrared spectroscopy, elemental analysis, surface area measurements, swelling studies, and scanning electron microscopy. Poly(EGDMA–VTAZ) beads with a swelling ratio of 84% were used for the heavy‐metal removal studies. The adsorption capacities of the beads for Cd(II), Hg(II), and Pb(II) were investigated in aqueous media containing different amounts of these ions (5–750 mg/L) and at different pH values (3.0–7.0). The maximum adsorption capacities of the poly(EGDMA–VTAZ) beads were 85.7 mg/g (0.76 mmol/g) for Cd(II), 134.9 mg/g (0.65 mmol/g) for Pb(II), and 186.5 mg/g (0.93 mmol/g) for Hg(II). The affinity order toward triazole groups on a molar basis was observed as follows: Hg(II) > Cd(II) > Pb(II). pH significantly affected the adsorption capacity of the VTAZ‐incorporated beads. The equilibrium data were well fitted to the Redlich–Peterson isotherm. Consideration of the kinetic data suggested that chemisorption processes could have been the rate‐limiting step in the adsorption process. Regeneration of the chelating‐beads was easily performed with 0.1M HNO3. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4276–4283, 2006  相似文献   

17.
Ahmet Sar? 《Desalination》2009,249(1):260-316
The adsorption characteristics of Pb(II) and Cd(II) onto colemanite ore waste (CW) from aqueous solution were investigated as a function of pH, adsorbent dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the adsorption isotherms. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The adsorption capacity of CW was found to be 33.6 mg/g and 29.7 mg/g for Pb(II) and Cd(II) ions, respectively. Analyte ions were desorbed from CW using both 1 M HCl and 1 M HNO3. The recovery for both metal ions was found to be higher than 95%. The mean adsorption energies evaluated using the D-R model indicated that the adsorption of Pb(II) and Cd(II) onto CW were taken place by chemisorption. The thermodynamic parameters (ΔGo, ΔHo and ΔSo) showed that the adsorption of both metal ions was feasible, spontaneous and exothermic at 20-50 °C. Adsorption mechanisms were also investigated using the pseudo-first-order and pseudo-second-order kinetic models. The kinetic results showed that the adsorption of Pb(II) and Cd(II) onto CW followed well pseudo-second order kinetics.  相似文献   

18.
Poly(N‐vinyl‐2‐pyrrolidone‐g‐citric acid) [P(VP‐g‐CA)] hydrogels were prepared for the removal of U(VI), Pb(II), and Cd(II) from aqueous solutions containing different amounts of these ions (2.5–10 mg/L). Different pHs (1–13), temperatures (20–40°C), and ionic strengths (0.5M) were also tried for the adsorption behavior of these ions. The competitive adsorption values of U(VI), Pb(II), and Cd(II) ions on pure poly(N‐vinyl‐2‐pyrrolidone) were low [0.71–2.03 mg of U(VI)/g of dry gel, 0.15–1.58 mg of Pb(II)/g of dry gel, and 0.10–0.68 mg of Cd(II)/g of dry gel]. The incorporation of citric acid significantly increased the adsorption of these ions [0.67–2.12 mg of U(VI)/g of dry gel, 0.44–1.88 mg of Pb(II)/g of dry gel, and 0.04–0.92 mg of Cd(II)/g of dry gel for P(VP‐g‐CA)‐1; 0.71–2.36 mg of U(VI)/g of dry gel, 0.60–2.16 mg of Pb(II)/g of dry gel, and 0.14–0.80 mg of Cd(II)/g of dry gel for P(VP‐g‐CA)‐2; and 0.79–2.47 mg of U(VI)/g of dry gel, 0.70–2.30 mg of Pb(II)/g of dry gel, and 0.20–0.86 mg of Cd(II)/g of dry gel for P(VP‐g‐CA)‐3]. The observed affinity order of adsorption was U(VI) > Pb(II) > Cd(II) for competitive conditions. The optimal pH range for the removal of these ions was 5–9. Competitive adsorption studies showed that other stimuli, such as the temperature and ionic strength of the solution, also influenced the U(VI), Pb(II), and Cd(II) adsorption capacity of P(VP‐g‐CA) hydrogels. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2019–2024, 2003  相似文献   

19.
The possibility of hybrid ion exchanger (HIX) application in the simultaneous removal of heavy metal ions such as Cr(VI), Cu(II) and Zn(II) as well as Cd(II) and Pb(II) was presented. The ion exchanger in question combines the unique properties of hydrated metal oxides with the mechanical and thermal stability of synthetic ion exchangers. The kinetics of the sorption process of Cr(VI), Cu(II) and Zn(II) as well as Cd(II) and Pb(II) in the presence of Cl, NO3 and SO42− as well as EDDS (ethylenediaminedisuccinic acid) was also analyzed. Additionally, the effect of initial concentration, phase contact time and pH was also studied. Taking into account the possibility of its application on a large scale, the parameters of the adsorption process were estimated based on the linear form of the Langmuir and Freundlich isotherms.  相似文献   

20.
1,4,8,11‐Tetraazacyclotetradecane (cyclam) was reacted with acryloyl chloride in a 1 : 2 molar ratio in dichloromethane in the presence of pyridine at 0°C. The modified cyclam was polymerized by adding an azobisisobutyronitrile initiator and irradiated with a UV lamp under reflux for 6 h. Precipitated cyclam containing polymer in the bulk structure was removed from the suspension by filtration. After washing and drying the final polymeric materials were used for transition metal ion adsorption and desorption studies. A Fourier transform IR spectrophotometer and thermogravimetric analyzer were used to characterize the polymeric structure. The affinity of the polymeric material for transition metal ions was used to test the adsorption–desorption of selected ions [Cu(II), Ni(II), Co(II), Cd(II), Pb(II)] from aqueous media containing different amounts of these metal ions (5–800 ppm) at different pH values (2.0–8.0). It was found that the adsorption rates were high and the adsorption equilibrium was reached in about 30 min. The uptake of the transition metal ions onto the polymer from solutions containing a single metal ion was 3.17 mmol/g for Cu(II), 0.98 mmol/g for Cd(II), 0.79 mmol/g for Co(II), 0.78 mmol/g for Ni(II), and 0.32 mmol/g for Pb(II). This polymer showed high affinity for Cu(II) compared to the other metal ions in the single ion solution and in the mixture of transition metal ions. The affinity order of the transition metal ions was Cu(II) ? Ni(II) > Cd(II) > Co(II) > Pb(II) for competitive adsorption. More than 95% of the adsorbed transition metal ions were desorbed in 2 h in a desorption medium containing 1.0M HNO3. Poly(cyclam) was found to be suitable for repeated use of more than five cycles without a noticeable loss of adsorption capacity. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1406–1414, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号