首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Crystallization of diamond was studied in the CO2–C, CO2–H2O–C, H2O–C, and CH4–H2–C systems at 5.7 GPa and 1200–1420°C. Thermodynamic calculations show generation of CO2, CO2–H2O, H2O and CH4–H2 fluids in experiments with graphite and silver oxalate (Ag2C2O4), oxalic acid dihydrate (H2C2O4·2H2O), water (H2O), and anthracene (C14H10), respectively. Diamond nucleation and growth has been found in the CO2–C, CO2–H2O–C, and H2O–C systems at 1300–1420°C. At a temperature as low as 1200°C for 136 h there was spontaneous crystallization of diamond in the CO2–H2O–C system. For the CH4–H2–C system, at 1300–1420°C no diamond synthesis has been established, only insignificant growth on seeds was observed. Diamond octahedra form from the C–O–H fluids at all temperature ranges under investigation. Diamond formation from the fluids at 5.7 GPa and 1200–1420°C was accompanied with the active recrystallization of metastable graphite.  相似文献   

2.
The synthesis of a novel 3D aluminophosphate is described. The thermal properties of the material were investigated, and the existence of three high-temperature variants was revealed. The crystal structures of the as-synthesized material (UiO-26-as) and the material existing around 250°C (UiO-26-250) were solved from powder X-ray diffraction data. UiO-26-as with the composition [Al4O(PO4)4(H2O)]2−[NH3(CH2)3NH3]2+ crystallizes in the monoclinic space group P21/c (no. 14) with a=19.1912(5), b=9.3470(2), c=9.6375(2) Å and β=92.709(2)°. It exhibits a 3D open framework consisting of connections by PO4 tetrahedra with AlO4 tetrahedra, AlO5 trigonal bipyramids and AlO5(H2O) octahedra forming two types of layers stacked along [1 0 0] and connected by Al–O–P bondings. The structure possesses a 1D 10-ring channel system running along [0 0 1], in which doubly protonated 1,3-diaminopropane molecules are located. UiO-26-250 with the composition [Al4O(PO4)4]2−[NH3(CH2)3NH3]2+ crystallizes in the monoclinic space group P21/c with a=19.2491(4), b=9.27497(20), c=9.70189(20) Å and β=93.7929(17)°. The transformation to UiO-26-250 involves removal of the water molecule which originally is coordinated to aluminum. The rest of the structure remains virtually unchanged. The crystal structures of the two other variants existing around 400 (UiO-26-400) and 600°C (UiO-26-600) remain unknown.  相似文献   

3.
During the reactions related to oxidative steam reforming and combustion of methane over -alumina-supported Ni catalysts, the temperature profiles of the catalyst bed were studied using an infrared (IR) thermograph. IR thermographical images revealed an interesting result: that the temperature at the catalyst bed inlet is much higher under CH4/H2O/O2/Ar = 20/10/20/50 than under CH4/H2O/O2/Ar = 10/0/20/70; the former temperature is comparable to that over noble metal catalysts such as Pt and Pd. Based on the temperature-programmed reduction and oxidation measurements over fresh and used catalysts, the metallic Ni is recognized at the catalyst bed inlet under CH4/H2O/O2/Ar = 20/10/20/50, although it is mainly oxidized to NiAl2O4 under CH4/H2O/O2/Ar = 10/0/20/70. This result indicates that the addition of reforming gas (CH4/H2O = 10/10) to the combustion gas (CH4/O2 = 10/20) can stabilize Ni species in the metallic state even under the presence of oxygen in the gas phase. This would account for its extremely high combustion activity.  相似文献   

4.
A kinetic study on CH4 combustion over a PdO/ZrO2 (10%, w/w) catalyst has been performed in a temperature range between 400 and 550 °C by means of an annular catalytic microreactor.

The role of mass transfer phenomena including diffusion in the catalyst pore, gas–solid diffusion and axial diffusion in the gas phase, has been preliminary addressed by means of mathematical modeling. Simulation results have pointed out the key role of internal diffusion showing that thicknesses of the active catalyst layer as thin as 10–15 μm are required to minimize the impact of mass transfer limitations. The thermal behavior of the reactor has been also addressed by means of catalytic combustion tests with CH4 and CO–H2 mixtures as fuels. The results have demonstrated the possibility to obtain nearly isothermal temperature profiles under severe conditions (up to 3% of CH4) thanks to effective dissipation of reaction heat by radiation from the catalyst outer skin.

Finally the effect of reactants (CH4 and O2) and products (H2O and CO2) on CH4 combustion rate has been addressed. The results have shown that both H2O and CO2 markedly inhibit the reaction up to 550 °C. The data have been fitted by the following simple power law expression r=krPCH4PH2O−0.32PCO2−0.25 with an apparent activation energy of 108 kJ/mol.

Evidences have been found and discussed indicating a key role of the support on the extent of such inhibition effects.  相似文献   


5.
The inhibition effect of H2O on V2O5/AC catalyst for NO reduction with NH3 is studied at temperatures up to 250 °C through TPD, elemental analyses, temperature-programmed surface reaction (TPSR) and FT-IR analyses. The results show that H2O does not reduce NO and NH3 adsorption on V2O5/AC catalyst surface, but promotes NH3 adsorption due to increases in Brønsted acid sites. Many kinds of NH3 forms present on the catalyst surface, but only NH4+ on Brønsted acid sites and a small portion of NH3 on Lewis acid sites are reactive with NO at 250 °C or below, and most of the NH3 on Lewis acid sites does not react with NO, regardless the presence of H2O in the feed gas. H2O inhibits the SCR reaction between the NH3 on the Lewis acid sites and NO, and the inhibition effect increases with increasing H2O content. The inhibition effect is reversible and H2O does not poison the V2O5/AC catalyst.  相似文献   

6.
LiNiVO4 was prepared from Li2CO3, Ni(CH3COO)2·4H2O and NH4VO3 using tartaric acid as a complexing agent with 1:1–1:4 mole ratios of metals:tartaric acid and subsequent calcination at 350–700 °C for 6–12 h. Inverse spinel LiNiVO4 was detected using XRD. FTIR and Raman analyses revealed the presence of stretching band of VO4 tetrahedrons. Only Ni, V and O were detected by EDX. The 1:4 mole ratio for the product with 450 °C calcination for 6 h analyzed by SEM, TEM and electron diffraction (ED) composes of LiNiVO4 nano-powder with 10–30 nm in diameter.  相似文献   

7.
In this work, we investigated the activity and stability of Ag–alumina catalysts for the SCR of NO with methane in gas streams with a high concentration of SO2, typical of coal-fired power plant flue gases. Ag–alumina catalysts were prepared by coprecipitation–gelation, and dilute nitric-acid solutions were used to remove weakly bound silver species from the surface of the as prepared catalysts after calcination. SO2 has a severe inhibitory effect, essentially quenching the CH4-SCR reaction on this type catalysts at temperatures <600 °C. SO2 adsorbs strongly on the surface forming aluminum and silver sulfates that are not active for CH4-SCR of NOx. Above 600 °C, however, the reaction takes place without catalyst deactivation even in the presence of 1000 ppm SO2. The reaction light-off coincides with the onset of silver sulfate decomposition, indicating the critical role of silver in the reaction mechanism. SO2 is reversibly adsorbed on silver above 600 °C. While alumina sites remain sulfated, this does not hinder the reaction. Sulfation of alumina only decreases the extent of adsoption of NOx, but adsorption of NOx is not the limiting step. Methane activation is the limiting step, hence the presence of sulfur-free Ag–O–Al species is a requirement for the reaction. Strong adsorption of SO2 on Ag–alumina decreases the rates of the reaction, and increases the activation energies of both the reduction of NO to N2 and the oxidation of CH4, the latter more than the former. Our results indicate partial contribution of gas phase reactions to the formation of N2 above 600 °C. H2O does not inhibit the reaction at 625 °C, and the effect of co-addition of H2O and SO2 is totally reversible.  相似文献   

8.
An experimental study is presented concerning solubility and primary nucleation kinetics of monohydrate citric acid from pure and selectively impure (KH2PO4, MgSO4 · 7H2O and FeSO4 · 7H2O) aqueous solutions. The metastable range of pure solutions is wide, ranging from 6 to 14°C, and the order of primary nucleation, equal to 2.51, is quite low. The addition of the tested impurities, which are usual fermentation aids, at concentrations lower than wt. 1%, produces negligible effects on the solubility and slightly enhances the primary nucleation rate. However, the presence of these compounds modifies the crystal habit at birth: in particular, the addition of MgSO4 · 7H2O and FeSO4 · 7H2O makes these crystals more elongated, but this effect diminishes as the crystals grow.  相似文献   

9.
The formation of ettringite (3CaO · Al2O3 · 3CaSO4 · 32H2O) and monosulfate (3CaO · Al2O3 · CaSO4 · 12H2O) from tricalcium aluminate (3CaO · Al2O3) and gypsum (CaSO4 · 2H2O) in sodium hydroxide (NaOH) solutions was investigated by isothermal calorimetry and X-ray diffraction analyses. Tricalcium aluminate/gypsum mixtures with a molar aluminate-to-sulfate ratio of 1:3 were hydrated at constant temperatures from 40 to 80°C in deionized water and 200 and 500 mM of NaOH solutions. Ettringite was the only crystalline phase ultimately formed between 40 and 80°C, regardless of whether hydration was carried out in deionized water or sodium hydroxide solutions. The rates of ettringite formation were retarded in sodium hydroxide solutions at all temperatures when compared to hydration in deionized water. The apparent activation energy for the conversion of the tricalcium aluminate/gypsum mixture to ettringite was observed to depend on the concentration of sodium hydroxide.  相似文献   

10.
This work investigates the effect of treatments under different CH4-containing atmospheres on the reactivity of fresh and S-poisoned 2% w/w Pd/Al2O3/CeO2 catalysts for methane combustion.

Over the fresh catalyst the decomposition/reformation processes of PdO occurring during cycles of CH4-reducing/lean combustion pulses allowed the complete recovery of activity losses possibly associated with H2O poisoning which were observed during prolonged exposure under lean combustion conditions. The presence of CeO2 markedly enhances both the activity losses under lean combustion conditions and the rate of PdO reoxidation/reactivation upon Pd redox cycle.

Under lean combustion conditions, regeneration of catalyst deactivated by exposure to SO2-containing atmosphere required very high temperatures (above 750 °C) in order to decompose stable sulphate species adsorbed on the support. Treatments consisting of alternate CH4-reducing/lean combustion pulses allowed a complete recovery of activity at much lower temperatures (550–600 °C) due to the reduction of sulphates by CH4 activated on the surface of Pd metal. A protecting role of CeO2 on Pd poisoning due either to exposure to SO2-containing atmosphere or to spill-back of support sulphates species was also evidenced.  相似文献   


11.
Spontaneous precipitation in the aqueous system Mg+2-Na+-SO3-2-SO4-2 affected by mixing solutions of MgSO4 and Na2SO3, together was studied for temperature varying from 40 to 80°C and for pH from 5,5 to 9. The initial composition of a precipitating system was 0·67 and 1·17 mol of MgSO3 and Na2SO4 per liter and 0·82 mol of MgSO3 and Na2SO4 together with 0·83 mol of MgSO4 per liter, respectively. Depending on the prevailing reaction conditions, solid phase consisting of MgSO3 6H2O, MgSO3 3H2O, Mg2NaOH(SO3)2 H2O or their mixture is formed. Each solid phase forms crystals of typical size and shape. The precipitation diagrams drawn in the temperature and pH coordinates for three different initial composition of the studied system are presented.  相似文献   

12.
Fine powders of submicron-sized crystallites of BaTiO3 were prepared at 85–130°C by the hydrothermal method, starting from TiO2.ξH2O gel and Ba(OH)2 solution. The products obtained below 110°C incorporated considerable amounts of H2O and OH in the lattice. As-prepared BaTiO3 is cubic and converts to the tetragonal phase after heat treatment at 1200°C, accompanied by the loss of residual OH ions. Hydrothermal reaction of SnO2.ξH2O gel with Ba(OH)2 at 150–260°C gives rise to the hydrated phase, BaSn(OH)6.3H2O, due to the amphoteric nature of SnO2.ξH2O which stabilises Sn(OH)62− anions in basic media. On heating in air or releasing the pressure in situ at 260°C, BaSn(OH)6.3H2O converts to BaSnO3 through an intermediate, BaSnO(OH)4. Solid solutions of Ba(Ti,Sn)O3 are directly formed from (TiO2 + SnO2)..ξH2O gel up to 35 mol% SnO2. At higher Sn contents, the hydrothermal products are mixtures of BaSn(OH)6.3H2O and BaTiO3, which on annealing at 1000°C result in monophasic Ba(Ti,Sn)O3. The sintering characteristics and the dielectric properties of the ceramics prepared out of these fine powders are presented. The dielectric properties of fine-grained Ba(Ti,Sn)O3 ceramics are explained on the basis of the prevailing diffuse phase transition behaviour.  相似文献   

13.
NO removal using CH4 as a reductant in a dual-bed system has been investigated with Co-NaX and Ag-NaX catalysts, which were prepared by Co2+-, Ag+-ion exchange into zeolite NaX, respectively, and activation for 5 h at 500 °C. The experimental result has been compared with that of a Co-NaX-CO catalyst, additionally pre-treated under CO flow for the Co-NaX catalyst. The cobalt crystal structure of a Co-NaX-CO catalyst is Co3O4, which promotes NO oxidation to NO2 by excess O2 at a low temperature (523 K). The mechanical mixture of Co-NaX-CO and Ag-NaX catalysts shows a synergy effect on NO reduction to N2 by CH4 in the presence of excess O2 and H2O, but the NO reduction decreases quickly as time passes. However, the NO reduction to N2 in a deNO bed at 523 K and a deNO2 bed at 423 K, which are relatively lower than the reaction temperatures for common SCR systems, still remained at 67% even in a H2O 10% gas mixture after 160 min.  相似文献   

14.
The homogeneous nucleation rates for H2SO4---H2O solution droplets at 25, 0 and −55°C are calculated and plotted as a function of H2SO4 concentration and H2O concentration. The plotted contours are very useful for quick estimates of the nucleation rates of H2SO4---H2O aerosols in smog chambers, polluted atmospheres and the stratosphere under different environmental conditions. The effect of the uncertainty in the saturated vapor pressure of H2SO4 on the nucleation rate is also discussed.  相似文献   

15.
Mono- and multi-metallic (bi- and tri-) Pt, Pd and Rh supported on cerium-promoted alumina (La Roche, SAS-1/16) catalysts were tested for activity as TWC, both fresh [G.C. Koltsakis, and A.M. Stamatelos, Progr. Energy Combust. Sci. 23 (1997) 1] and after accelerated aging. Aging consisted of a treatment at 900°C for 5 h during which an oxidizing (2.5% O2, 10% H2O, in N2) and a reducing (5.0% CO, 10% H2O, in N2) feedstream were cycled at 0.017 Hz through the catalyst. Activity tests were carried out by increasing temperature from 100 to 600°C at 3°C min−1, while two oxidizing and reducing (±0.5 A/F) feedstreams were alternately (1 Hz) fed through the reactor at 125 000 h−1 (STP). Conversion was continuously analyzed. Light-off temperature, T50, conversion at 500°C (normal running temperature), X500, and the stoichiometric window (A/F from 14.13 to 15.13) for stationary feedstreams, were determined.  相似文献   

16.
Activity and stability of an industrial Cr-free iron-based catalyst (NBC-1) for high-temperature water gas shift (WGS) reaction were studied in a fixed-bed reactor under 350 °C, 1 atm, H2O:gas = 1:1 and 3000 h−1 (dry-gas basis). Physical properties of the NBC-1 catalyst before and after the WGS reaction, the desorption behavior of H2O, CO, CO2 and H2, and surface reaction over the catalyst were characterized by BET, X-ray diffraction (XRD), Mössbauer emission spectroscopy (MES), temperature programmed desorption (TPD) and temperature programmed surface reaction (TPSR). The NBC-1 catalyst is active and has excellent thermo-stability even after pretreatment at a high temperature of 530 °C. Its activity and thermo-stability are comparable to those of an UCI commercial Fe-Cr catalyst, C12-4. XRD and MES studies show that iron in the fresh NBC-1 catalyst is present as γ-Fe2O3, most of which is converted to Fe3O4 during reduction and reaction. Results of TPD demonstrate that adsorbed CO2 and CO cannot exist on the NBC-1 surface beyond the temperature of 300 °C while higher temperatures (>400 °C) are required to completely desorb H2O. A redox mechanism of WGS on the NBC-1 surface is proposed based on the TPD and TPSR observations.  相似文献   

17.
Sharp NO and O2 desorption peaks, which were caused by the decomposition of nitro and nitrate species over Fe species, were observed in the range of 520–673 K in temperature-programmed desorption (TPD) from Fe-MFI after H2 treatment at 773 K or high-temperature (HT) treatment at 1073 K followed by N2O treatment. The amounts of O2 and NO desorption were dependent on the pretreatment pressure of N2O in the H2 and N2O treatment. The adsorbed species could be regenerated by the H2 and N2O treatment after TPD, and might be considered to be active oxygen species in selective catalytic reduction (SCR) of N2O with CH4. However, the reaction rate of CH4 activation by the adsorbed species formed after the H2 and N2O or the HT and N2O treatment was not so high as that of the CH4 + N2O reaction over the catalyst after O2 treatment. The simultaneous presence of CH4 and N2O is essential for the high activity of the reaction, which suggests that nascent oxygen species formed by N2O dissociation can activate CH4 in the SCR of N2O with CH4.  相似文献   

18.
This paper presents an investigation into the complex interactions between catalytic combustion and CH4 steam reforming in a co-flow heat exchanger where the surface combustion drives the endothermic steam reforming on opposite sides of separating plates in alternating channel flows. To this end, a simplified transient model was established to assess the stability of a system combining H2 or CH4 combustion over a supported Pd catalyst and CH4 steam reforming over a supported Rh catalyst. The model uses previously reported detailed surface chemistry mechanisms, and results compared favorably with experiments using a flat-plate reactor with simultaneous H2 combustion over a γ-Al2O3-supported Pd catalyst and CH4 steam reforming over a γ-Al2O3-supported Rh catalyst. Results indicate that stable reactor operation is achievable at relatively low inlet temperatures (400 °C) with H2 combustion. Model results for a reactor with CH4 combustion indicated that stable reactor operation with reforming fuel conversion to H2 requires higher inlet temperatures. The results indicate that slow transient decay of conversion, on the order of minutes, can arise due to loss of combustion activity from high-temperature reduction of the Pd catalyst near the reactor entrance. However, model results also show that under preferred conditions, the endothermic reforming can be sustained with adequate conversion to maintain combustion catalyst temperatures within the range where activity is high. A parametric study of combustion inlet stoichiometry, temperature, and velocity reveals that higher combustion fuel/air ratios are preferred with lower inlet temperatures (≤500 °C) while lower fuel/air ratios are necessary at higher inlet temperatures (600 °C).  相似文献   

19.
Development in highly active catalysts for the reforming of methane with H2O, CO2, and H2O+CO2, and partial oxidation of methane was conducted to produce hydrogen with high reaction rates. A Ni-based three-component catalyst such as Ni---La2O3---Ru or Ni---Ce2O3---Pt supported on alumina wash-coated ceramic fiber in a plate shape was very suitable for both reactions. The catalyst composition was set at 10 wt.-% Ni, 5.6 wt.-% La203, and 0.57 wt.-% Ru for example, or molar ratios of these components were 1:0.2:0.03. Even with such a low concentration, the precious metal enhanced the reaction rate markedly, and this synergistic effect was ascribed to the hydrogen spillover effect through the part of precious metal and it resulted in a more reduced surface of the main catalyst component. In particular, a marked enhancement in the reaction rate of CO2-reforming of methane was observed by the modification of a low concentration Rh to the Ni---Ce203---Pt catalyst. Very high space-time yields of H2 (i.e., 8300 mol/1 h in partial oxidation of methane at 600°C with a methane conversion of 37.5%, and 3585 mol/1 h in CO2reforming of methane at 600°C with a methane conversion of 58%) were realized in those reactions. By combining the catalytic combustion reaction, methane conversion to syngas was markedly enhanced, and even with a very short contact time (10 ms) the conversion of methane increased more than that at 50 ms. The space-time yield of hydrogen amounted to 2,780 mol/1 h with a methane conversion of 90% at 700°C. Furthermore, in a reaction of CH4---CO2---H2O---O2 on the four components catalyst, an extraordinarily high space-time yield of hydrogen, 12 190 mol/1 h, could be realized under the conditions of very high space velocity (5 ms).  相似文献   

20.
The wettability of nanocrystalline CVD diamond films grown in a microwave plasma using Ar/CH4/H2 mixtures with tin melt (250–850 °C) and water was studied by the sessile-drop method. The films showed the highest contact angles θ of 168 ± 3° for tin among all carbon materials. The surface hydrogenation and oxidation allow tailoring of the θ value for water from 106 ± 3° (comparable to polymers) to 5° in a much wider range compared to microcrystalline diamond films. Doping with nitrogen by adding N2 in plasma strongly affects the wetting presumably due to an increase of sp2-carbon fraction in the films and formation of C–N radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号