首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A concept on integration of 3D visual and auditory rendering is proposed in this paper. By the auditory rendering we mean the computer acoustical simulation with direct sound outputs that is based on the physical model simulation. The so-called visual rendering means the computer generation of 3D images of real world and even virtual world, but without sounds. By integration of 3D visual and auditory rendering we mean while computer generates a 3D image of physical model of real world, it generates the sound based on the physical model displayed if there is a reverberation-free sound source. Based on some kinds of similarity between the propagation nature of light and sound, a modified radiosity algorithm has been proposed for integrating implementation. The algorithm is suitable for both visual and room auditory rendering. It means for a given enclosure, once the form factors are calculated, they can be applied for calculating both the light radiosities and sound radiosities simultaneously. The features of the algorithm are indicated. The implementation techniques are given in detail. The integration of visual and auditory rendering is a big step toward real world simulation, furthermore it will extend the research direction of visualization in scientific computing (ViSC) to visualization and audiobilization in scientific computing (VAiSC). The combination of VAiSC with virtual reality technique will improve human-computer interface greatly.  相似文献   

2.
This paper discusses 3D visualization and interactive exploration of large relational data sets through the integration of several well-chosen multidimensional data visualization techniques and for the purpose of visual data mining and exploratory data analysis. The basic idea is to combine the techniques of grand tour, direct volume rendering, and data aggregation in databases to deal with both the high dimensionality of data and a large number of relational records. Each technique has been enhanced or modified for this application. Specifically, positions of data clusters are used to decide the path of a grand tour. This cluster-guided tour makes intercluster-distance-preserving projections in which data clusters are displayed as separate as possible. A tetrahedral mapping method applied to cluster centroids helps in choosing interesting cluster-guided projections. Multidimensional footprint splatting is used to directly render large relational data sets. This approach abandons the rendering techniques that enhance 3D realism and focuses on how to efficiently produce real-time explanatory images that give comprehensive insights into global features such as data clusters and holes. Examples are given where the techniques are applied to large (more than a million records) relational data sets.  相似文献   

3.
三维医学图象可视化技术综述   总被引:15,自引:0,他引:15       下载免费PDF全文
概要地分析和评述了近年来三维医学图象可视化技术的发展,并主要从三维医学图象的分割标注、多模态医学图象的数据整合、体数据的绘制等3个角度对三维医学图象的可视化技术进行了分类综述,同时介绍了各种算法的原理和最新进展,由于医学图象可视化的目的是辅助医学了解生物内部组织的信息,因此除图象绘制技术外,组织及组织特性的精确自动分割标注技术,以及将不同图象模态提供的互补信息综合起来的匹配/融合技术外,都是医学图象可视化需要解决的重要问题,其中,多模态图象的可视化在三维医学图象可视化领域中最具有挑战性和发展前景。  相似文献   

4.
Two-level volume rendering   总被引:7,自引:0,他引:7  
Presents a two-level approach for volume rendering, which allows for selectively using different rendering techniques for different subsets of a 3D data set. Different structures within the data set are rendered locally on an object-by-object basis by either direct volume rendering (DVR), maximum-intensity projection (MIP), surface rendering, value integration (X-ray-like images) or non-photorealistic rendering (NPR). All the results of subsequent object renderings are combined globally in a merging step (usually compositing in our case). This allows us to selectively choose the most suitable technique for depicting each object within the data while keeping the amount of information contained in the image at a reasonable level. This is especially useful when inner structures should be visualized together with semi-transparent outer parts, similar to the focus+context approach known from information visualization. We also present an implementation of our approach which allows us to explore volumetric data using two-level rendering at interactive frame rates  相似文献   

5.
直接体绘制技术在地质体三维可视化中的应用研究   总被引:1,自引:0,他引:1  
将直接体绘制技术应用于地质体三维可视化,首先对原始钻孔数据进行插值、网格化等预处理得到满足直接体绘制需要的规则体数据,从而建立反映地层分布的地质体三维标量数据场;然后用直接体绘制技术绘制三维地质体,避免了体元建模方法中在对地质体进行剖切等操作时必须要解决的剖面与体元之间复杂的判断求交等过程。采用该方法实现了对某地区地质体的三维可视化。  相似文献   

6.
体视化是地学信息三维可视化研究的前沿技术之一,体绘制算法的效率直接关系到体视化的效果。本文在研究已有光线投射体绘制改进算法的基础上,提出利用线性八叉树数据结构对光线投射体绘制算法进行改进研究,不仅实现了体数据的压缩。而且能对压缩体数据进行直接体视化。在PC机上的实验表明,该方法具有时间复杂度与数据复杂度基本无关的特点.加速效果明显。最后,文章指出了该方法的适用范围。  相似文献   

7.
In this paper we present a fast visualization technique for volumetric data, which is based on a recent non-photorealistic rendering technique. Our new approach enables alternative insights into 3D data sets (compared to traditional approaches such as direct volume rendering or iso-surface rendering). Object contours, which usually are characterized by locally high gradient values, are visualized regardless of their density values. Cumbersome tuning of transfer functions, as usually needed for setting up DVR views is avoided. Instead, a small number of parameters is available to adjust the non-photorealistic display. Based on the magnitude of local gradient information as well as on the angle between viewing direction and gradient vector, data values are mapped to visual properties (color, opacity), which then are combined to form the rendered image (MIP is proposed as the default compositing stragtegy here). Due to the fast implementation of this alternative rendering approach, it is possible to interactively investigate the 3D data, and quickly learn about internal structures. Several further extensions of our new approach, such as level lines are also presented in this paper.  相似文献   

8.
Image-based streamline generation and rendering   总被引:1,自引:0,他引:1  
Seeding streamlines in 3D flow fields without considering their projections in screen space can produce visually cluttered rendering results. Streamlines will overlap or intersect with each other in the output image, which makes it difficult for the user to perceive the underlying flow structure. This paper presents a method to control the seeding and generation of streamlines in image space to avoid visual cluttering and allow a more flexible exploration of flow fields. In our algorithm, 2D images with depth maps generated by a variety of visualization techniques can be used as input from which seeds are placed and streamlines are generated. The density and rendering styles of streamlines can be flexibly controlled based on various criteria to improve visual clarity. With our image space approach, it is straightforward to implement the level of detail rendering, depth peeling, and stylized rendering of streamlines to allow for more effective visualization of 3D flow fields.  相似文献   

9.
医学图像三维可视化中任意平面切片的研究与实现   总被引:1,自引:0,他引:1  
对医学图像的三维重建技术进行研究,利用介于面绘制和体绘制之间的切片法来实现三维体数据可视化,并针对断层图像序列所生成三维体数据的切片方法进行了深入讨论。提出一种可操作性很强的切片方法,能较好地实现三维体数据中冠状面、矢状面、特别是任意平面的切片。同时,该方法已经用VC6.0结合VTK(Visualization Toolkit)编程进行实现,效果符合医学诊断要求,并得到了有关应用。  相似文献   

10.
Visualizing multivariate volume data is useful when the user wants to inspect the correlational distributions of multiple variables in a spatial field. Existing solutions commonly rely on color blending or weaving techniques to show multiple variables on a sampling point, probably causing heavy visual confusion. This paper presents an alternative solution that employs a multi-class sampling technique to generate spatially separated sampling points for multiple variables and illustrates the sampling points of each variable individually. We combine this new sampling scheme with the conventional direct volume rendering mode, iso-surface mode, and the cutting plane mode to support interactive inspection of volumetric distributions of multiple variables. The effectiveness of our approach is demonstrated with the IEEE VIS Contest 2004 Hurricane dataset and a 3D nuclear fusion simulation dataset.  相似文献   

11.
三维有限元数据场体绘制算法的研究   总被引:1,自引:1,他引:0  
三维有限元数据场包含了庞大的信息量,不易于人们深刻理解和分析。可视化技术将数据场以图形、图像的形式显示出来,揭示出三维有限元数据场中蕴藏的丰富内涵。讨论了三维数据场可视化体绘制中射线跟踪法和直接投影法的优点及不足,提出了将射线跟踪法及直接投影法各自优点结合起来的新算法,应用于三维有限元数据场的体绘制。新算法一方面充分利用场在投影区域上的二维连贯性,每次推进的是一个面片而不是一个孤立的像素点,另一方面针对每个视线段子段,充分利用场在深度方向的连贯性,用分析积分法完成累积光强和透明度计算。算法效率高,统一性强。  相似文献   

12.
光线投射算法中重采样的设计和实现   总被引:3,自引:0,他引:3       下载免费PDF全文
体绘制技术在医学成像和科学可视化领域有着极为广泛的应用,但由于其巨大的计算开销,限制了其实时动态体绘制的应用,因此许多研究人员致力于静态体绘制加速算法的研究,为了提高体绘制速度。分析了三维规则数据场重采样的原理。光线投射算法中对3D数据场重采样的实现方法;根据具体重建对象,提出了在3D数据场重采样中采用球形包围盒的方法,给出了人体头部和眼球的三维可视化结果,实验表明:这种算法能有效地减少重采样的计算量,并使求交计算更加简单。  相似文献   

13.
This paper presents an interactive technique for the dense texture-based visualization of unsteady 3D flow, taking into account issues of computational efficiency and visual perception. High efficiency is achieved by a 3D graphics processing unit (GPU)-based texture advection mechanism that implements logical 3D grid structures by physical memory in the form of 2D textures. This approach results in fast read and write access to physical memory, independent of GPU architecture. Slice-based direct volume rendering is used for the final display. We investigate two alternative methods for the volumetric illumination of the result of texture advection: First, gradient-based illumination that employs a real-time computation of gradients, and, second, line-based lighting based on illumination in codimension 2. In addition to the Phong model, perception-guided rendering methods are considered, such as cool/warm shading, halo rendering, or color-based depth cueing. The problems of clutter and occlusion are addressed by supporting a volumetric importance function that enhances features of the flow and reduces visual complexity in less interesting regions. GPU implementation aspects, performance measurements, and a discussion of results are included to demonstrate our visualization approach.  相似文献   

14.
随着三维数据场可视化精度要求的不断提高,直接体绘制方法已经成为该领域的研究热点。然而,提高数据场采样率以获得高质量的图像与绘制速度的降低这一矛盾,很大程度上限制了体绘制方法的研究进展。本文阐述了体绘制方法的关键技术——分类和体绘制积分,并在此基础上介绍了预积分分类技术。该方法能够同时提高体绘制方法的执行效率与图像质量,并给出了实例说明。最后,提出了预积分分类技术中存在的一些问题。  相似文献   

15.
The construction of high-filled loess project has some engineering and technical challenges, such as excavation of earth and backfilling of earth are both large, complex construction environment, variety of influence factors. According to this situation, this paper presents a dynamic 3D visualization method for high-filled project based on volume rendering. Through comparative analysis and visual analysis, realized at different times of the Loess fill internal detection data visualization and analysis presented. The results show that this visualization method can directly and accurately display the construction process, help decision makers master construction information and process.  相似文献   

16.
三维空间体数据的可视化既需要同时展示数据多个属性的特征,又需要结合数据周边复杂地理地貌的特征。体绘制是当前最有效的三维数据可视化方法之一,但现有的体绘制方法尚没有考虑到数据场周围复杂的地理地貌特征。本文提出了一种基于 Google Earth (简称 GE) 地理信息的空间数据体绘制可视化方法,其基本思想是首先由三维纹理算法出发,对数据做沿高度法向的切片,多层渲染后组合为最终的体绘制效果,然后将渲染结果转换为 GE 支持的 KML 数据格式,充分利用 GE 中的复杂地形和三维建筑群模型信息,最后加入体感控制和 WEB 呈现功能。这为三维空间数据的可视化提供了一种全新的思路,取得了更好的可视化效果。最后利用数值模拟的大气雾霾数据论证了技术的可行性。  相似文献   

17.
Research issues in volume visualization   总被引:6,自引:0,他引:6  
Volume visualization is a method of extracting meaningful information from volumetric data sets through the use of interactive graphics and imaging. It addresses the representation, manipulation, and rendering of volumetric data sets, providing mechanisms for peering into structures and understanding their complexity and dynamics. Typically, the data set is represented as a 3D regular grid of volume elements (voxels) and stored in a volume buffer (also called a cubic frame buffer), which is a large 3D array of voxels. However, data is often defined at scattered or irregular locations that require using alternative representations and rendering algorithms. There are eight major research issues in volume visualization: volume graphics, volume rendering, transform coding of volume data, scattered data, enriching volumes with knowledge, segmentation, real-time rendering and parallelism, and special purpose hardware  相似文献   

18.
This paper introduces a streamline visualization technique that empowers PolarGlobe, an interactive, virtual globe-based, multi-dimensional scientific visualization tool to facilitate the observation and visual inspection of changes in the climate in real time. Specifically, this technique achieves effective visualization of vector-based earth science data through an automated data processing pipeline which integrates novel strategies including random seeding, finer-granularity parallelization and real-time rendering. The random seeding strategy allows for a vivid visual effect and an interactive framerate regardless of the spatial resolution in the raw dataset. The visualization algorithm is designed to be naturally parallelizable by partitioning the rendering tasks of unsteady vector field into multiple subtasks such that high-performance rendering can be realized. The platform is capable of taking either irregular or regular gridded data as input, and through the proposed data (re)projection pipeline, an automatic transformation of spatially enabled scientific data from the original data projection to the 3D globe-based virtual space is achieved. A series of experiments was conducted to identify the best configuration of rendering parameters to achieve the optimal rendering performance and visual effect. The results demonstrated the scalability and capability of the proposed PolarGlobe system to visualize big and unsteady vector flow data across different spatial and temporal scales. PolarGlobe implements former Vice President Al Gore's vision of a digital earth that enables scientists and citizens across the world to interactively study our planet. We expect the methods and techniques presented in this work to contribute significantly to both the scientific visualization and climate science communities.  相似文献   

19.
多层次并行体绘制算法的研究与应用   总被引:1,自引:0,他引:1  
三维数据场的体绘制技术是科学可视化中一个重要的研究方向,本文在研究和总结体绘制的发展历程与关键技术的基础之上,着重研究了体绘制中的光线投射算法,结合多核处理器机群系统,提出并实现了一种基于多层次并行编程模型的并行光线投射体绘制算法,并成功地将该算法应用于三维城市浅层地质模型,取得了良好的可视化效果。分别对MPI环境和多层次并行编程MPI+OpenMP环境下的光线投射算法进行了不同计算规模的性能比较实验。实验和分析表明,多层次并行光线投射体绘制算法加快了体绘制的速度,MPI+OpenMP多层次并行模型性能高于纯MPI编程模型的性能。  相似文献   

20.
体绘制技术是一种能够真实地反映空间数据场内部信息的可视化技术。在体绘制研究领域中,非规则的空间散乱数据体绘制目前仍然是一个研究热点。文中采用空间数据插值算法对散乱的原始数据进行网格化插值,然后使用光投影体绘制算法对规则网格数据进行体绘制。最后,通过新方法实现了某油藏区地下流体压力和孔隙度分布结构的体绘制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号