首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Thin films of copper indium di-selenide (CIS) with a wide range of compositions near stoichiometry have been formed on glass substrates in vacuum by the stacked elemental layer (SEL) deposition technique. The compositional and optical properties of the films have been measured by proton-induced X-ray emission (PIXE) and spectrophotometry (photon wavelength range of 300–2500 nm), respectively. Electrical conductivity (σ), charge-carrier concentration (n), and Hall mobility (μH) were measured at temperatures ranging from 143 to 400 K. It was found that more indium-rich films have higher energy gaps than less indium-rich ones while more Cu-rich films have lower energy gaps than less Cu-rich films. The sub-bandgap absorption of photons is minimum in the samples having Cu/In ≈ 1 and it again decreases, as Cu/In ratio becomes less than 0.60. Indium-rich films show n-type conductivities while near-stoichiometric and copper-rich films have p-type conductivities. At 300 K σ, n and μH of the films vary from 2.15 × 10−3 to 1.60 × 10−1 (Ω cm)−1, 2.28 × 1015 to 5.74 × 1017 cm−3 and 1.74 to 5.88 cm2 (V s)−1, respectively, and are dependent on the composition of the films. All the films were found to be non-degenerate. The ionization energies for acceptors and donors vary between 12 and 24, and 3 and 8 meV, respectively, and they are correlated well with the Cu/In ratios. The crystallites of the films were found to be partially depleted in charge carriers.  相似文献   

2.
Thin films of zinc oxide (ZnO) were prepared by dc reactive magnetron sputtering on glass substrates at various oxygen partial pressures in the range 1×10−4–6×10−3 mbar and substrate temperatures in the range 548–723 K. The variation of cathode potential of zinc target on the oxygen partial pressure was explained in terms of target poisoning effects. The stoichiometry of the films has improved with the increase in the oxygen partial pressure. The films were polycrystalline with wurtzite structure. The films formed at higher substrate temperatures were (0 0 2) oriented. The temperature dependence of Hall mobility of the films formed at various substrate temperatures indicated that the grain boundary scattering of charge carriers was predominant electrical conduction mechanism in these films. The optical band gap of the films increased with the increase of substrate temperature. The ZnO films formed under optimized oxygen partial pressure of 1×10−3 mbar and substrate temperature of 663 K exhibited low electrical resistivity of 6.9×10−2 Ω cm, high visible optical transmittance of 83%, optical band gap of 3.28 eV and a figure of merit of 78 Ω−1 cm−1.  相似文献   

3.
Bi2Ti2O7 thin films have been grown directly on n-type GaAs (1 0 0) by the chemical solution decomposition technique. X-ray diffraction analysis shows that the Bi2Ti2O7 thin films are polycrystalline. The optical properties of the thin films are investigated using infrared spectroscopic ellipsometry (3.0–12.5 μm). By fitting the measured ellipsometric parameter (Ψ and Δ) data with a three-phase model (air/Bi2Ti2O7/GaAs), and Lorentz–Drude dispersion relation, the optical constants and thickness of the thin films have been obtained simultaneously. The refractive index and extinction coefficient increase with increasing wavelength. The fitted plasma frequency ωp is 1.64×1014 Hz, and the electron collision frequency γ is 1.05×1014 Hz, and it states that the electron average scattering time is 0.95×10−14 s. The absorption coefficient variation with respect to increasing wavelength has been obtained.  相似文献   

4.
Optically active Er3+:Yb3+ codoped Y2O3 films have been produced on c-cut sapphire substrates by pulsed laser deposition from ceramic Er:Yb:Y2O3 targets having different rare-earth concentrations. Stoichiometic films with very high rare-earth concentrations (up to 5.5 × 1021 at cm− 3) have been achieved by using a low oxygen pressure (1 Pa) during deposition whereas higher pressures lead to films having excess of oxygen. The crystalline structure of such stoichiometric films was found to worsen the thicker the films are. Their luminescence at 1.53 μm and up-conversion effects have been studied by pumping the Yb3+ at 0.974 μm. The highest lifetime value (up to 4.6 ms) is achieved in films having Er concentrations of ≈ 3.5 × 1020 at cm− 3 and total rare-earth concentration ≈ 1.8 × 1021 at cm− 3. All the stoichiometric films irrespective of their rare-earth concentration or crystalline quality have shown no significant up-conversion.  相似文献   

5.
The dielectric properties and electrical conductivity of AlN films deposited by laser-induced chemical vapour deposition (LCVD) are studied for a range of growth conditions. The static dielectric constant is 8.0 ± 0.2 over the frequency range 102−107 Hz and breakdown electric fields better than 106 V cm−1 are found for all films grown at temperatures above 130°C. The resistivity of the films grown under optimum conditions (substrate temperature above 170°C, NH3/TMA flow rate ratio greater than 300 and a deposition pressure of 1–2 Torr) is about 1014 Ω cm and two conduction mechanisms can be identified. At low fields, F < 5 × 105 V cm−1 and conductivity is ohmic with a temperature dependence showing a thermal activation energy of 50–100 meV, compatible with the presumed shallow donor-like states. At high fields, F > 1 × 106 V cm−1, a Poole-Frenkel (field-induced emission) process dominates, with electrons activated from traps at about 0.7–1.2 eV below the conduction band edge. A trap in this depth region is well-known in AlN. At fields between 4 and 7 × 105 V cm−1 both conduction paths contribute significantly. The degradation of properties under non-ideal growth conditions of low temperature or low precursor V/III ratio is described.  相似文献   

6.
M. Din  R. D. Gould 《Thin solid films》1999,340(1-2):28-32
Cadmium arsenide is a II–V semiconductor which exhibits n-type intrinsic conductivity with high mobility up to μn=1.0–1.5 m2/V s. Potential applications include magnetoresistors and both thermal and photodetectors, which require electrical characterization over a wide range of deposition and measurement conditions. The films were prepared by vacuum evaporation with deposition rates in the range 0.5–6.0 nm/s and substrate temperatures maintained at constant values of 20–120°C. Sandwich-type samples were deposited with film thicknesses of 0.1–1.1 μm using evaporated electrodes of Ag and occasionally Au or Al. Above a typical electric field Fb of up to 5×107 V/m all samples showed instabilities characteristic of dielectric breakdown or electroforming. Below this field they showed a high-field conduction process with logJV1/2, where J is the current density and V the applied voltage. This type of dependence is indicative of carrier excitation over a potential barrier whose effective barrier height has been lowered by the high electric field. The field-lowering coefficient β had a value of (1.2–5.3)×10−5 eV m1/2/V1/2 which is reasonably consistent with the theoretical value of βPF=2.19×10−5 eV m1/2/V1/2 expected when the field-lowering occurs at donor-like centres in the semiconductor (Poole–Frenkel effect). For thinner films Schottky emission was more probable. The effects of the film thickness, electrode materials, deposition rate, and substrate temperature on the conductivity behaviour are discussed.  相似文献   

7.
Highly conducting and transparent indium tin oxide (ITO) thin films were prepared on SiO2 glass and silicon substrates by pulsed laser ablation (PLA) from a 90 wt.% In2O3-10 wt.% SnO2 sintered ceramic target. The growths of ITO films under different oxygen pressures (PO2) ranging from 1×10−4–5×10−2 Torr at low substrate temperatures (Ts) between room temperature (RT) and 200°C were investigated. The opto-electrical properties of the films were found to be strongly dependent on the PO2 during the film deposition. Under a PO2 of 1×10−2 Torr, ITO films with low resistivity of 5.35×10−4 and 1.75×10−4 Ω cm were obtained at RT (25°C) and 200°C, respectively. The films exhibited high carrier density and reasonably high Hall mobility at the optimal PO2 region of 1×10−2 to 1.5×10−2 Torr. Optical transmittance in excess of 87% in the visible region of the solar spectrum was displayed by the films deposited at Po2≥1×10−2 Torr and it was significantly reduced as the PO2 decreases.  相似文献   

8.
This paper embodies the first report on the electrochemical deposition of RuS2 thin films. The as-deposited and heat-treated films (in argon atmosphere) were characterized by XRD, SEM and UV-VIS-NIR spectrophotometry. The polycrystalline deposits of RuS2 obtained indicated a cubic structure with a lattice constant of 5.685 Å, an average grain size around 3 μm, and an absorption co-efficient of 5 × 104 cm−1. The optical band gap was found to be 1.48 eV.  相似文献   

9.
P.C. Joshi  S.B. Desu 《Thin solid films》1997,300(1-2):289-294
Polycrystalline BaTiO3 thin films having the perovskite structure were successfully produced on platinum coated silicon, bare silicon, and fused quartz substrate by the combination of the metallo-organic solution deposition technique and post-deposition rapid thermal annealing treatment. The films exhibited good structural, electrical, and optical properties. The electrical measurements were conducted on metal-ferroelectric-metal (MFM) and metal-ferroelectric-semiconductor (MFS) capacitors. The typical measured small signal dielectric constant and dissipation factor at a frequency of 100 kHz were 255 and 0.025, respectively, and the remanent polarization and coercive field were 2.2 μC cm−2 and 25 kV cm−1, respectively. The resistivity was found to be in the range 1010–1012 Ω·cm, up to an applied electric field of 100 kV cm−1, for films annealed in the temperature range 550–700 °C. The films deposited on bare silicon substrates exhibited good film/substrate interface characteristics. The films deposited on fused quartz were highly transparent. An optical band gap of 3.5 eV and a refractive index of 2.05 (measured at 550 nm) was obtained for polycrystalline BaTiO3 thin film on fused quartz substrate. The optical dispersion behavior of BaTiO3 thin films was found to fit the Sellmeir dispersion formula well.  相似文献   

10.
The elestic stiffness parameter Ef/(1−νf) and the thermal expansion coefficient f were obtained for four different silicides (TiSi2, TaSi2, MoSi2 and WSi2) and for two different nitrides (chemically vapor-deposited Nitrox Si3N4 and r.f. plasma SiN) from stress-temperature measurements on identical films deposited on two different substrate materials. The values determined for f and Ef/(1−νf) were quite similar for all silicides and averaged 15 ppm °C−1 and 1.1 × 1012 dyncm−2 respectively. The thermal mismatch of these silicides is such that, once safely formed, the silicide film should be able to withstand high temperature processing steps without cracking. For the nitrides the values were essentially the same (approximately 1.5 ppm°C-1), although the larger value of Ef/(1−νf) chemically vapor-deposited Si3N4 film (3.7 × 1012 as opposed to 1.1 × 1012 dyn cm-2) indicates that it is somewhat stiffer than the SiN film.  相似文献   

11.
In the development of ZnO-based varistors the electrical properties of ZnO/Bi2O3 junctions and of the two individual oxides are being investigated. Following our recent work on a.c. conductivity in Al---ZnO---Al sandwich structures we currently report d.c. measurements. The structures were prepared by r.f. magnetron sputtering in an argon/oxygen mixture in the ratio 4:1. Capacitance-voltage data confirm that the Al/ZnO interface does not form a Schottky barrier and measurements of the dependence of capacitance on film thickness indicate that the relative permittivity of the films is approximately 9.7. With increasing voltage the current density changed from an ohmic to a power-law dependence with exponent n≈3. Furthermore measurements of current density as a function of reciprocal temperature showed a linear dependence above about 240 K, with a very low activation energy below this temperature consistent with a hopping process. The higher temperature results may be explained assuming a room-temperature electron concentration n0 and space-charge-limited conductivity, dominated by traps exponentially distributed with energy E below the conduction band edge according to N = N0exp(−E/kTt), where k is Boltzmann's constant. Typical derived values of these parameters are: n0 = 7.2 × 1016 m−3, N0 = 1.31 × 1045 J−1 m−3 and Tt = 623 K. The total trap concentration and the electron mobility were estimated to be 1.13 × 1025 m−3 and (5.7−13.1) ×10−3m2V−1s−1 respectively.  相似文献   

12.
An amorphous transparent conductive oxide thin film of molybdenum-doped indium oxide (IMO) was prepared by reactive direct current magnetron sputtering at room temperature. The films formed on glass microscope slides show good electrical and optical properties: the low resistivity of 5.9 × 10− 4 Ω cm, the carrier concentration of 5.2 × 1020 cm− 3, the carrier mobility of 20.2 cm2 V− 1 s− 1, and an average visible transmittance of about 90.1%. The investigation reveals that oxygen content influences greatly the carrier concentration and then the photoelectrical properties of the films. Atomic force microscope evaluation shows that the IMO film with uniform particle size and smooth surface in terms of root mean square of 0.8 nm was obtained.  相似文献   

13.
Electrical properties of Ge thin films evaporated on Si3N4 CVD-coated Si substrate were improved by introducing a heat treatment after the deposition of Ge films. Evaporation conditions were optimized by changing the substrate temperature and deposition rate, and then, heat treatment was performed. At substrate temperatures during the evaporation lower than 300 °C and higher than 400 °C, deposited films were amorphous and polycrystalline, respectively. At substrate temperatures lower than 400 °C, Ge films were evaporated without degrading the surface roughness. The Hall mobility of films evaporated at room temperature increased with increasing the substrate and heating temperature and showed about 400 cm2 V−1 s−1 for the hole concentration of 4 × 1017 cm−3 at the heating temperature of 900 °C. This value was almost comparable to that of p-type Ge single crystal.  相似文献   

14.
A novel layered-structure ZnIn2Se4 phase has been obtained. Texture electron diffraction patterns aid in the identification of a crystal structure with lattice parameters a = 4.045 Å and c = 52.29 Å, space group R m, and z = 4.5. Crystal electron diffraction patterns displayed superstructural reflection, thus indicating a √3-fold increase in the a parameter. The similirity of reflection locations and intensities both on the crystal rotation electron diffraction pattern and on texture electron diffraction patterns showed that no phase transition occurred on specimen pounding. Electrophysical and optical parameters (Eg = 1.68 eV; N = 8 × 1022 m-3; = 0.1Ωm) are studied at 300 K. The Hall coefficient is constant (RH = 7.2 × 10-5m3C-1, mobility μ = 8 × 10-3m2V-1s-1 at 200–300 K.  相似文献   

15.
The production of highly Cu+-doped KCl films and the properties of their 266 nm absorption band, which has an off-center property in doped single crystals, open the possibility of application of these films as ultra-violet optical filters. The investigated films, of approximately 1 μm thickness, were prepared by resistive co-evaporation of KCl and CuCl powders on different substrates of CaF2, Al2O3, SiO2, KCl and Si. The Cu+ concentration, as determined by energy-dispersive X-ray, ranges from 1020 to 1021 cm−3, for 1–15% CuCl nominal mole percent concentration. Structural and optical properties were investigated through scanning electron microscopy, X-ray diffraction, ellipsometry, optical absorption and transmission. The films are polycrystalline, and the gain size decreases with increasing Cu+ impurity concentration, yielding an increase of visible transmission to a limited CuCl concentration. These films show a 6.295 Å lattice parameter with a f.c.c. structure and an index of refraction of 1.53 at 266 nm. When the Cu+ concentration is increased, the UV band position remains the same and no clusters are evidenced even to the high 15% CuCl concentration investigated, which differs very much from single crystals samples grown by the Kyropoulos-Czochralski method. For a Cu+ concentration of 8×1020 cm−3 the film shows a transmission better than 88% at 350 nm wavelength.  相似文献   

16.
In order for hot-wire chemical vapor deposition to compete with the conventional plasma-enhanced chemical vapor deposition technique for the deposition of microcrystalline silicon, a number of key scientific problems should be cleared up. Among these points, the concentration of tungsten (nature of the filament), as well as the concentration of oxygen and carbon (elements issued when vacuum is broken between two runs), should not exceed threshold values, beyond which electronic properties of the films could be degraded, as in the case of monocrystalline silicon. Quantitative chemical analysis of these elements has been carried out using the secondary ion mass spectrometry technique through depth profiles. It has been shown that for a high effective filament surface area (Sf=27 cm2), the W content increases steadily from 5×1014 to 2×1018 atoms cm−3 when the filament temperature Tf increases from 1500 to 1800 °C. For a fixed Tf, the W content increases with the effective surface area Sf. Thus, considering our reactor geometry, the W content does not exceed the detection limit (5×1014 atoms cm−3) when Tf and Sf are limited to 1600 °C and 4 cm2, respectively. For O and C elements, under deposition conditions of high dilution of silane in hydrogen (96%), O and C concentrations approaching 1020 atoms cm−3 have been obtained. The introduction of an inner vessel inside the reactor, the addition of a load-lock chamber and a decrease in substrate temperature to 300 °C have led to a drastic decrease in these contents down to 3×1018 atoms cm−3, compatible with the realization of 6% efficiency HWCVD μc-Si:H solar cells.  相似文献   

17.
Diamond-like carbon films, grown on microscope slides by a dual-ion beam sputtering system, were implanted by 110 keV N+ under the doses of 1 × 1015, 1 × 1016 and 1 × 1017ions cm−2 respectively. The implantation induced changes in electrical resistivity of the films and in infrared (IR) transmittance of the specimens were investigated as a function of implantation dose. The structural changes of the films were also studied using IR spectroscopy and Raman spectroscopy. It was observed that, with the increase of implantation dose, the diamond-like carbon films display two different stages in electrical and optical behaviours. The first is the increase of both the film resistivity and the IR transmittance of specimen at the dose of 1 × 1015 ions cm−2 which, we consider, is attributed to the implantation-induced increase sp3 C---H bonds. However, when the doses are higher than 1 × 1015 ions cm−2, the film resistivity and the IR transmittance of specimen decrea significantly and the decrease rates at dose range of 1×1016 to 1×1017 ions cm−2 are smaller than those between 1×1015 and 1 × 1016 ions cm−2. We conclude that the significant reductions of the two parameters at high doses are caused by the decreases of bond-angle disorder and of sp3 C---H bonds, the increases of sp2 C---C bonds dominated the crystallite size and/or number and also the sp2 C---H bonds. The smaller decrease rates at a dose range of 1 × 1016 to 1 × 1017 ions cm−2 may be caused by further recombination of some retained hydrogen atoms to carbon atoms.  相似文献   

18.
Doping and electrical characteristics of in-situ heavily B-doped Si1−xyGexCy (0.22<x<0.6, 0<y<0.02) films epitaxially grown on Si(100) were investigated. The epitaxial growth was carried out at 550°C in a SiH4–GeH4–CH3SiH3–B2H6–H2 gas mixture using an ultraclean hot-wall low-pressure chemical vapor deposition (LPCVD) system. It was found that the deposition rate increased with increasing GeH4 partial pressure, and only at high GeH4 partial pressure did it decrease with increasing B2H6 as well as CH3SiH3 partial pressures. With the B2H6 addition, the Ge and C fractions scarcely changed and the B concentration (CB) increased proportionally. The C fraction increased proportionally with increasing CH3SiH3 partial pressures. These results can be explained by the modified Langmuir-type adsorption and reaction scheme. In B-doped Si1−xyGexCy with y=0.0054 or below, the carrier concentration was nearly equal to CB up to approximately 2×1020 cm−3 and was saturated at approximately 5×1020 cm−3, regardless of the Ge fraction. The B-doped Si1−xyGexCy with high Ge and C fractions contained some electrically inactive B even at the lower CB region. Resistivity measurements show that the existence of C in the film enhances alloy scattering. The discrepancy between the observed lattice constant and the calculated value at the higher Ge and C fraction suggests that the B and C atoms exist at the interstitial site more preferentially.  相似文献   

19.
Appreciable excited-state absorption (ESA) in U2+:CaF2 and Co2+:ZnSe saturable absorbers was measured at λ=1.573 μm by optical transmission versus light fluence curves of 30–40 ns long pulses. The ground- and excited-state absorption cross-sections obtained were (9.15±0.3)×10−20 and (3.6±0.2)×10−20 cm2, respectively, for U2+:CaF2, and (57±4)×10−20 and (12.5±1)×10−20 cm2 for Co2+:ZnSe. Thus, ESA is not negligible in U2+:CaF2 and Co2+:ZnSe, as previously estimated.  相似文献   

20.
Stoichiometrically optimized, epitaxial SmBa2Cu3O7-δ thin films with high Tc, R = 0 and high critical current densities jc have been prepared for the first time in a tightly controlled molecular beam epitaxy process in non-reactive molecular oxygen, followed by an in situ loading process with molecular oxygen. The surface roughness (on a submicrometre scale) of single-crystal films with their c axes perpendicular to the surface depends markedly on the surface temperature of the substrate during the deposition of the epitaxial films, within a range of only a few degrees centigrade. The calibrated optimal temperature for the preparation of epitaxial films 200 nm thick of this single orientation is found to be 680 ± 5 °C. In scanning tunnelling microscopy investigations, they show a surface roughness of less than 6 nm (five SmBa2Cu3O7−δ unit cells) on a 2 μm × 2 μm scale. At deposition temperatures below this optimal deposition temperature, the well-known a-axis growth increases rapidly, whereas higher temperatures give a significantly higher surface roughness, which can be observed by scanning electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号