首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
李锋  宋华  张华阳 《化工进展》2012,(5):1047-1051
采用浸渍-沉淀法制备Al2O3-ZrO2复合氧化物,通过程序升温还原法制备Ni2P/Al2O3-ZrO2催化剂。运用X射线衍射、N2吸附-脱附、X射线光电子能谱技术对载体和催化剂进行表征,并以噻吩加氢脱硫、吡啶加氢脱氮反应为探针考察复合氧化物对Ni2P催化剂加氢活性的影响。结果表明,在Al2O3表面引入少量ZrO2,既保持了γ-Al2O3大比表面积的结构优势,又减少了P或Ni与Al2O3表面的接触,促进Ni2P的形成。载体中ZrO2质量分数20%的Ni2P/Al2O3-ZrO2催化剂活性最高,载体焙烧温度过高会导致催化剂活性下降。  相似文献   

2.
Thin films of Al2O3 and doped Al2O3 were prepared on a glass substrate by dip coating process from specially formulated ethanol sols. The morphologies of the unworn and worn surfaces of the films were observed with atomic force microscope (AFM) and scanning electron microscope (SEM). The chemical compositions of the obtained films were characterized by means of X-ray photoelectron spectroscopy (XPS). The tribological properties of obtained thin films sliding against Si3N4 ball were evaluated and compared with glass slide on a one-way reciprocating friction tester. XPS results confirm that the target films were obtained successfully. The doped elements distribute in the film evenly and exist in different kinds of forms, such as oxide and silicate. AFM results show that the addition of the doped elements changes the structure of the Al2O3 films, i.e., a rougher and smoother surface is obtained. The wear mechanisms of the films are discussed based on SEM observation of the worn surface morphologies. As the results, the doped films exhibit better tribological properties due to the improved toughness. Sever brittle fracture is avoided in the doped films. The wear of glass is characteristic of brittle fracture and severe abrasion. The wear of Al2O3 is characteristic of brittle fracture and delamination. And the wear of doped Al2O3 is characteristic of micro-fracture, deformation and slight abrasive wear. The introduction of ZnO is recommended to improve the tribological property of Al2O3 film.  相似文献   

3.
将Al(NO3)3.9H2O,Zr(NO3)4.5H2O与活化后的主体材料SBA-15分子筛通过尿素水解的方法,制备了改性SBA-15分子筛,进一步用硫酸浸渍处理改性分子筛以增强分子筛表面的酸活性中心。并采用红外光谱、扫描电镜、透射电镜等分析方法对试样进行了表征,结果表明,制得的催化剂SO24-/Al2O3-ZrO2/SBA-15仍然保持高度有序的介孔一维六角结构。并将其催化剂用于棕榈酸与甲醇的酯化反应中,采用正交实验确定较佳的工艺条件为:催化剂用量为1.2 g,n(棕榈酸)∶n(甲醇)=1∶12,反应时间为9 h,此条件下棕榈酸甲酯的反应收率可以达到82.3%,实验表明所合成的固体酸催化剂具有良好的催化性能。  相似文献   

4.
The role of vanadium oxide and palladium on the benzene oxidation reaction over Pd/V2O5/Al2O3 catalysts was investigated. The Pd/V2O5/Al2O3 catalysts were more active than V2O5/Al2O3 and Pd/Al2O3 catalysts. The increase of vanadium oxide content decreased the Pd dispersion and increased the benzene conversion. A strong Pd particle size effect on benzene oxidation reaction was observed. Although the catalysts containing high amount of V4+ species were more active, the Pd particle size effect was responsible for the higher activity.  相似文献   

5.
The effect of the Pd addition method into the fresh Pd/(OSC + Al2O3) and (Pd + OSC)/Al2O3 catalysts (OSC material = CexZr1−xO2 mixed oxides) was investigated in this study. The CO + NO and CO + NO + O2 model reactions were studied over fresh and aged catalysts. The differences in the fresh catalysts were insignificant compared to the aged catalysts. During the CO + NO reaction, only small differences were observed in the behaviour of the fresh catalysts. The light-off temperature of CO was about 20 °C lower for the fresh Pd/(OSC + Al2O3) catalyst than for the fresh (Pd + OSC)/Al2O3 catalyst during the CO + NO + O2 reaction. For the aged catalysts lower NO reduction and CO oxidation activities were observed, as expected. Pd on OSC-containing alumina was more active than Pd on OSC material after the agings. The activity decline is due to a decrease in the number of active sites on the surface, which was observed as a larger Pd particle size for aged catalysts than for fresh catalysts. In addition, the oxygen storage capacity of the aged Pd/(OSC + Al2O3) catalyst was higher than that of the (Pd + OSC)/Al2O3 catalyst.  相似文献   

6.
Nanosized particles dispersed uniformly on Al2O3 particles were prepared from the decomposition of precursor Cr(CO)6 by metal organic chemical vapor deposition (MOCVD) in a fluidized chamber. These nanosized particles consisted of Cr2O3, CrC1−x, and C. A solid solution of Al2O3–Cr2O3 and an Al2O3–Cr2O3/Cr3C2 nanocomposite were formed when these fluidized powders were pre-sintered at 1000 and 1150 °C before hot-pressing at 1400 °C, respectively. In addition, an Al2O3–Cr2O3/Cr-carbide (Cr3C2 and Cr7C3) nanocomposite was formed when the particles were directly hot pressed at 1400 °C. The interface between Cr3C2 and Al2O3 is non-coherent, while the interface between Cr7C3 and Al2O3 is semi-coherent.  相似文献   

7.
Ni/Al_2O_3催化剂是甲烷二氧化碳重整反应制取合成气研究最多、最具应用潜力的一种催化剂。通过对催化剂进行CO_2-TPD研究,考察还原态Ni/Al_2O_3催化剂的CO_2脱附特性。结果表明,浸渍法制备的Ni/Al_2O_3催化剂CO_2脱附曲线呈现双峰,分别在(60~65)℃和(350~380)℃出现高低温两个活性位;高温CO_2吸附量为3.0 cm~3·g~(-1),低温CO_2吸附量为24.0 cm~3·g~(-1)。催化剂的CO_2吸附量与其Ni含量无关。考察选用不同载体的CO_2脱附行为,发现以Al_2O_3为载体的催化剂CO_2吸附量是MgO和SiO_2为载体催化剂的2~4倍,以TiO_2为载体的催化剂几乎不吸附CO_2。  相似文献   

8.
Dispersing La2O3 on δ- or γ-Al2O3 significantly enhances the rate of NO reduction by CH4 in 1% O2, compared to unsupported La2O3. Typically, no bend-over in activity occurs between 500° and 700°C, and the rate at 700°C is 60% higher than that with a Co/ZSM-5 catalyst. The final activity was dependent upon the La2O3 precursor used, the pretreatment, and the La2O3 loading. The most active family of catalysts consisted of La2O3 on γ-Al2O3 prepared with lanthanum acetate and calcined at 750°C for 10 h. A maximum in rate (mol/s/g) and specific activity (mol/s/m2) occurred between the addition of one and two theoretical monolayers of La2O3 on the γ-Al2O3 surface. The best catalyst, 40% La2O3/γ-Al2O3, had a turnover frequency at 700°C of 0.05 s−1, based on NO chemisorption at 25°C, which was 15 times higher than that for Co/ZSM-5. These La2O3/Al2O3 catalysts exhibited stable activity under high conversion conditions as well as high CH4 selectivity (CH4 + NO vs. CH4 + O2). The addition of Sr to a 20% La2O3/γ-Al2O3 sample increased activity, and a maximum rate enhancement of 45% was obtained at a SrO loading of 5%. In contrast, addition of SO=4 to the latter Sr-promoted La2O3/Al2O3 catalyst decreased activity although sulfate increased the activity of Sr-promoted La2O3. Dispersing La2O3 on SiO2 produced catalysts with extremely low specific activities, and rates were even lower than with pure La2O3. This is presumably due to water sensitivity and silicate formation. The La2O3/Al2O3 catalysts are anticipated to show sufficient hydrothermal stability to allow their use in certain high-temperature applications.  相似文献   

9.
The effect of Al2O3 on mechanical properties of Ti3SiC2/Al2O3 composite fabricated by SPS was studied systematically. The results show that the hardness of the Ti3SiC2/Al2O3 composite can reach 10.28 GPa, 50% higher than that of pure Ti3SiC2. However, slight decrease in the other mechanical properties was observed with Al2O3 addition higher than 5–10 vol.%, which is believed to be due to the agglomeration of Al2O3 in the composite.  相似文献   

10.
Carbon black oxidation in the presence of CeO2, Al2O3 and manganese oxide catalysts has been studied in tight contact conditions. In the presence of manganese based catalysts, the temperature gain is about 275 °C compared to the non-catalysed carbon black oxidation. The contribution of the manganese species to enhance the reactivity of carbon black oxidation has been evaluated by EPR technique. For Mn/Ce + CB mixtures the Mn2+ content considerably increases consequently to tight milled treatment indicating the reduction of some manganese species with higher oxidation states into Mn2+ ions. This phenomenon can be considered as the first step in the carbon black oxidation mechanism in the presence of Mn/Ce catalysts.  相似文献   

11.
Mechanical properties of Al2O3/ZrO2 composites   总被引:1,自引:0,他引:1  
In the present study, both t-phase zirconia and m-phase zirconia particles are incorporated into an alumina matrix. Dense Al2O3/(t-ZrO2+m-ZrO2) composites were prepared by sintering pressurelessly at 1600 °C. The microstructure of the composites are characterized, the elastic modulus, strength and toughness determined. Because the ZrO2 inclusions are close to each other in the Al2O3 matrix, the yttrium ion originally in t-ZrO2 particles can diffuse to nearby m-ZrO2 particles during sintering, and the m-phase zirconia is thus stabilized after sintering. The strength of the Al2O3/(t-ZrO2+m-ZrO2) composites after surface grinding can reach values as high as 940 MPa, which is roughly three times that of Al2O3 alone. The strengthening effect is contributed by microstructural refinement together with the surface compressive stresses induced by grinding. The toughness of alumina is also enhanced by adding both t-phase and m-phase zirconia, which can reach values as high as two times that of Al2O3 alone. The toughening effect is attributed mainly to the zirconia t–m phase transformation.  相似文献   

12.
The catalytic activity of a mixed phase of copper–cobalt and copper–manganese oxides supported on magnesium fluorine or alumina has been studied in low temperature CO oxidation at 30 °C. During calcination, the oxides studied partially react to form different type spinels depending on the calcination temperature. These spinels have different effect on the catalytic activity. In low temperature CO oxidation the copper–manganese catalysts are more active than the copper–cobalt ones.  相似文献   

13.
14.
A series of CuO–ZnO/Al2O3 solids were prepared by wet impregnation using Al(OH)3 solid and zinc and copper nitrate solutions. The amounts of copper and zinc oxides were varied between 10.3 and 16.0 wt% CuO and between 0.83 and 7.71 wt% ZnO. The prepared solids were subjected to thermal treatment at 400–1000°C. The solid–solid interactions between the different constituents of the prepared solids were studied using XRD analysis of different calcined solids. The surface characteristics of various calcined adsorbents were investigated using nitrogen adsorption at −196°C and their catalytic activities were determined using CO-oxidation by O2 at temperatures ranged between 125°C and 200°C.

The results showed that CuO interacts with Al2O3 to produce copper aluminate at ≥600°C and the completion of this reaction requires heating at 1000°C. ZnO hinders the formation of CuAl2O4 at 600°C while stimulates its production at 800°C. The treatment of CuO/Al2O3 solids with different amounts of ZnO increases their specific surface area and total pore volume and hinders their sintering (the activation energy of sintering increases from 30 to 58 kJ mol−1 in presence of 7.71 wt% ZnO). This treatment resulted in a progressive decrease in the catalytic activities of the investigated solids but increased their catalytic durability. Zinc and copper oxides present did not modify the mechanism of the catalyzed reaction but changed the concentration of catalytically active constituents (surface CuO crystallites) without changing their energetic nature.  相似文献   


15.
The phase diagram of the Al2O3–ZrO2–Nd2O3 system was constructed in the temperature range 1250–2800 °C. The liquidus surface of the phase diagram reflects the preferentially eutectic interaction in the system. Two new ternary and one new binary eutectics were found. The minimum melting temperature is 1675 °C and it corresponds to the ternary eutectic Nd2O3·11Al2O3 + F-ZrO2 + NdAlO3. The solidus surface projection and the schematic of the alloy crystallization path confirm the preferentially congruent character of phase interaction in the ternary system. The polythermal sections present the complete phase diagram of the Al2O3–ZrO2–Nd2O3 system. No ternary compounds or regions of remarkable solid solution were found in the components or binaries in this ternary system.  相似文献   

16.
It is shown that introduction of additives of rare-earth element oxides (La2O3, CeO2) enables regulating the structural and functional characteristics of Pd/Al2O3-catalysts (applied on ceramic monoliths of honeycomb structure) of nitrogen oxide reduction by methane. Modifying additives provide increase of thermal stability of porous structure of both highly dispersed Al2O3, as the second support, and the catalyst as a whole.

Contribution of La2O3 and CeO2 in increasing the thermal stability is of an additive nature, and lanthanum oxide shows the higher efficiency than cerium one. According to X-ray phase analysis data, stabilizing action is conditioned by occurrence of rare-earth element oxides into lattice of Al2O3, which retards diffusional processes leading to phase transitions of low-temperature crystalline modifications of alumina into high-temperature ones with a low specific surface. For the catalyst samples modified with La2O3 an effect of thermal activation is observed, which is revealed by increase in catalytic activity as a result of annealing at 850 °C. Such a phenomenon, as shown by means of X-ray photoelectron spectroscopy technique, can be explained via stabilization of palladium in singly charged state in the form of groups of Pd+O2 and corresponding increase in concentration of active centers.  相似文献   


17.
Effect of additives, In2O3, SnO2, CoO, CuO and Ag, on the catalytic performance of Ga2O3–Al2O3 prepared by sol–gel method for the selective reduction of NO with propene in the presence of oxygen was studied. As for the reaction in the absence of H2O, CoO, CuO and Ag showed good additive effect. When H2O was added to the reaction gas, the activity of CoO-, CuO- and Ag-doped Ga2O3–Al2O3 was depressed considerably, while an intensifying effect of H2O was observed for In2O3- and SnO2-doped Ga2O3–Al2O3. Of several metal oxide additives, In2O3-doped Ga2O3–Al2O3 showed the highest activity for NO reduction by propene in the presence of H2O. Kinetic studies on NO reduction over In2O3–Ga2O3–Al2O3 revealed that the rate-determining step in the absence of H2O is the reaction of NO2 formed on Ga2O3–Al2O3 with C3H6-derived species, whereas that in the presence of H2O is the formation of C3H6-derived species. We presumed the reason for the promotional effect of H2O as follows: the rate for the formation of C3H6-derived species in the presence of H2O is sufficiently fast compared with that for the reaction of NO2 with C3H6-derived species in the absence of H2O. Although the retarding effect of SO2 on the activity was observed for all of the catalysts, SnO2–Ga2O3–Al2O3 showed still relatively high activity in the lower temperature region.  相似文献   

18.
Homogeneous-eutectic microstructure of Y3Al5O12–Al2O3 system without coarse primary crystals was formed at an off-eutectic composition. This method utilizes a low migration rate in an amorphous phase. A mixture of Y2O3 and Al2O3 having the off-eutectic composition was melted and quenched rapidly to form an amorphous phase. A heat-treatment of the amorphous phase at 1000 °C and 1300 °C for 30 min formed Y3Al5O12 and Al2O3 phases. SEM observation of this material, which was formed from the amorphous phase at 1300 °C for 30 min, showed homogeneous eutectic-like microstructure. The formation of the primary crystals (coarse Al2O3), which are always observed in the off-eutectic compositions by ordinary method, was completely suppressed.  相似文献   

19.
Al2O3 hollow fibre membranes were prepared by a combined phase-inversion and sintering method. An organic binder solution (dope) containing suspended aluminium oxide (Al2O3) powders, either in mono size or a distributed size, is spun to a hollow fibre precursor, which is then sintered at elevated temperatures. In spinning the hollow fibre precursor, polyethersulfone (PESf), N-methyl-2-pyrrolidone (NMP) and polyvinyl pyrrolidone (PVP) were used as a polymer binder, a solvent and an additive, respectively. The Al2O3 hollow fibre membranes prepared were characterized using a scanning electron microscope (SEM) and gas permeation techniques. Effects of Al2O3 particle size and size distribution, the sintering temperature and Al2O3/PESf ratio on the structure and performance of the resulting membranes were studied extensively. The prepared Al2O3 hollow fibre membranes retains its asymmetric structure (mainly resulted from the phase inversion technique) even after the sintering process. Preparation of the Al2O3 hollow fibre membrane with a high mechanical strength and moderate permeation characteristics is feasible if the Al2O3 powders with a distributed particle size in the spinning (dope) solution is employed.  相似文献   

20.
A process using metal-organic chemical vapor infiltration (MOCVI) conducted in fluidized bed was employed for the preparation of nano-sized ceramic composites. The Cr-species was infiltrated into Al2O3 granules by the pyrolysis of chromium carbonyl (Cr(CO)6) at 300–450 °C. The granulated powder was pressureless sintered or hot-pressed to achieve high density. The results showed that the dominant factors influencing the Cr-carbide phases formation, either Cr3C2 or Cr7C3, in the composite powders during the sintering process were the temperature and oxygen partial pressure in the furnace. The coated Cr-phase either in agglomerated or dispersive condition was controlled by the use of colloidal dispersion. The microstructures showed that fine (20 –600 nm) CrxCy grains (≤8 vol.%) located at Al2O3 grain boundaries hardly retarded the densification of Al2O3 matrix in sintering process. The tests on hardness, strength and toughness appeared that the composites with the inclusions (Cr3C2) had gained the advantages over those by the rule of mixture. Even 8 vol.% ultrafine inclusions have greatly improved the mechanical properties. The strengthening and toughening mechanisms of the composites were due to grain-size reduction, homogenous dispersion of hard inclusions, and crack deflection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号