首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We sought to test the hypotheses that closely related alcohols would have effects on GABAA receptor function that were not predicted by differences in lipid solubility, and that the subunit structure of the GABAA receptor would significantly affect the actions of different alcohols. Cloned subunits of human GABAA receptors were expressed in Xenopus oocytes, and two-electrode voltage-clamp recording was used to quantify the membrane current response to GABA in the presence and absence of different alcohols. 1-Butanol and 2-butanol differentially potentiated the response to 20 microM GABA in oocytes expressing the alpha 1 beta 2 gamma 2L and alpha 2 beta 2 gamma 2L receptor isoforms. In the alpha 1 beta 2 gamma 2L receptor construct, 1-butanol was more potent than 2-butanol to potentiate GABAA receptor function, but 2-butanol had a greater efficacy. In the alpha 2 beta 2 gamma 2L receptor construct, 1-butanol and 2-butanol were equipotent, but 2-butanol again had a greater efficacy. In the alpha 2 beta 2 receptor construct, both 1-butanol and 2-butanol produced large potentiations of the current response to 3 microM GABA. The efficacy for butanol potentiation of GABA responses in the absence of a gamma 2L subunit was greater, but the potency was greatly reduced. Low concentrations (20 mM) of ethanol potentiated GABA responses in the alpha 1 beta 2 gamma 2L receptor construct. Ethanol potentiation of GABAA receptor function was completely blocked by the benzodiazepine receptor partial inverse agonist RO15-4513 at a concentration (0.5 microM) that did not alter the control GABA response. In contrast, RO15-4513 did not block potentiation of GABAA receptor activity induced by n-propanol, 1-butanol, 2-butanol, 1-heptanol, or propofol (2,6-diisopropylphenol). These results suggest that alcohols have specific interactions with GABAA receptors, and that ethanol may have unique effects not shared by other longer chain alcohols.  相似文献   

2.
Propofol (2,6-diisopropylphenol) is an intravenous general anaesthetic which can directly activate and positively modulate the GABAA receptor. The effects of propofol on human recombinant GABAA receptors were studied in Xenopus oocytes expressing either alpha1beta2, alpha1beta2gamma2L, or alpha2beta2gamma2L receptor isoforms. In all receptor isoforms tested, propofol was able to potentiate the GABA-activated currents in a concentration-dependent manner. Although propofol potentiated both alpha1beta2 and alpha1beta2gamma2L receptor isoforms with equal affinity, the efficacy of propofol potentiation was markedly greater in the alpha1beta2 receptor isoform. In contrast, potentiation of the alpha2beta2gamma2L receptor isoform by propofol occurred with higher affinity and lower efficacy than in the alpha1beta2gamma2L receptor isoform. Propofol directly activated all three receptor isoforms in a concentration dependent manner. Addition of the gamma2L subunit subtype to the alpha1beta2 receptor isoform decreased receptor sensitivity to direct activation by propofol. Replacement of the alpha1-subunit subtype with the alpha2-subunit subtype increased receptor sensitivity to propofol's direct effects. These results suggest that the alpha-and gamma2L-subunit subtypes each have the ability to influence both the direct and modulatory actions of propofol on GABAA receptor function.  相似文献   

3.
The functional role of the large heterogeneity in GABAA receptor subunit genes and its role in setting the properties of inhibitory synapses in the CNS is poorly understood. A kinetic comparison between currents elicited by ultra-rapid application with a piezoelectric translator of 1 mM GABA to mammalian cells transfected with cDNAs encoding distinct GABAA receptor subunits revealed that the intrinsic deactivation and desensitization properties depend on subunit combination. In particular, receptors containing alpha 6 with beta 2 gamma 2 subunits were endowed with a significantly slower deactivation as compared to those receptors containing alpha 1 with beta 2 gamma 2 subunits. While desensitization produced by prolonged GABA applications on alpha 1 beta 2 gamma 2 receptors was characterized by a rapid exponential decay followed by a slower decay and a steady state response, alpha 6 beta 2 gamma 2 receptors lacked desensitization. Furthermore, GABAA receptors lacking the gamma 2 subunit were characterized by a much larger non-desensitization component and a very rapid deactivation. Lastly, analysis of GABA-activated currents in cells cotransfected with alpha 1 and alpha 6 together with beta 2 gamma 2 subunit revealed unique kinetic properties. Our results suggest that distinct subunit composition confers specific deactivation and desensitization properties that may profoundly affect synaptic decay kinetics and the capability to sustain high frequency synaptic inputs.  相似文献   

4.
We characterized modulation of the gamma-aminobutyric acid (GABA)-evoked responses of the diazepam-insensitive alpha 4 beta 2 gamma2 and alpha 6 beta 2 gamma 2 recombinant GABAA receptors. The partial agonist bretazenil potentiated the responses of both receptors with similar dose dependence but with a higher maximal enhancement at the alpha 4 beta 2 gamma 2 receptor. The bretazenil-induced potentiation was reduced by the benzodiazepine antagonist flumazenil. At a high concentration (10 microM), flumazenil was a weak potentiator of the GABA response. The partial agonist imidazenil was inactive. The imidazobenzodiazepine inverse agonist Ro 15-4513, which is known to bind with high affinity to the alpha 6 beta 2 gamma 2 receptor, potentiated the GABA responses of the alpha 4 beta 2 gamma 2 and alpha 6 beta 2 gamma 2 receptor subtypes with similar dose dependence over the concentration range of 0.1-10 microM. Methyl-6, 7-dimethoxy-4-ethyl-beta-carboline, a beta-carboline inverse agonist, had a similar potentiating effect when tested at a concentration of 10 microM. The alpha 4 beta 2 gamma 2 and alpha 6 beta 2 gamma 2 receptor-mediated currents had equal sensitivities to furosemide and Zn2+ ions, both of which reduced the GABA-evoked responses. The alpha 6 beta 2 gamma 2 receptor but not the alpha 4 beta 2 gamma 2 receptor exhibited a low level of spontaneous activity in the absence of GABA; this resting current could be directly potentiated by Ro 15-4513, methyl-6,7-dimethoxy-4-ethyl-beta-carboline, bretazenil and flumazenil and was blocked by picrotoxin. Thus, although the alpha 4 beta 2 gamma 2 receptors are insensitive to benzodiazepine binding site full agonists, such as diazepam, they can be modulated by certain ligands acting as partial and inverse agonists at diazepam-sensitive receptors and thereby contribute to the respective pharmacological profiles.  相似文献   

5.
GABAA receptors composed of human alpha 1 beta 2 gamma 2L, alpha 1 beta 2 gamma 2S, alpha 1 beta 3 gamma 2S, alpha 6 beta 3 gamma 2S, and alpha 5 beta 3 gamma 3 subunits as well as bovine alpha 1 beta 1 gamma 2L and alpha 1 beta 1 subunits were stably expressed in mammalian L(tk-) cells and transiently expressed in Xenopus oocytes. Effects of muscimol, ethanol, flunitrazepam, and pentobarbital on receptor function were compared for the two expression systems using a 36Cl- flux assay for cells and an electrophysiological assay for oocytes. Muscimol activated all receptors in both expression systems but was more potent for L(tk-) cells than oocytes; this difference ranged from 2.6-to 26-fold, depending upon subunit composition. The most pronounced differences between receptors and expression systems were found for ethanol. In L(tk-) cells, low (5-50 mM) concentrations of ethanol potentiated muscimol responses only with receptors containing the gamma 2L subunit. In oocytes, concentrations of 30-100 mM produced small enhancements for most subunit combinations. Flunitrazepam enhanced muscimol responses for all receptors except alpha 6 beta 3 gamma 2S and alpha 1 beta 1, and this enhancement was similar for both expression systems. Pentobarbital also enhanced muscimol responses for all receptors, and this enhancement was similar for L(tk-) cells and oocytes, except for alpha 6 beta 3 gamma 2S where the pentobarbital enhancement was much greater in oocytes than cells. The alpha 6 beta 3 gamma 2S receptors were also distinct in that pentobarbital produced direct activation of chloride channels in both expression systems. Thus, the type of expression/assay system markedly affects the actions of ethanol on GABAA receptors and also influences the actions of muscimol and pentobarbital on this receptor. Differences between these expression systems may reflect posttranslational modifications of receptor subunits.  相似文献   

6.
Antibodies specific for the gamma 1, gamma 2, and gamma 3 subunits of the gamma-aminobutyric acid (GABA)A receptor have been used to probe the composition of naturally occurring GABAA receptors in the rat brain. Most GABAA receptors contain at least one of these three subunits. The percentage of each, determined by immunoprecipitation of [3H]muscimol binding, was 11 +/- 1%, 59 +/- 3%, and 14 +/- 2% for gamma 1, gamma 2, and gamma 3 subunits, respectively. Receptors containing gamma 2 or gamma 3 subunits were labeled by benzodiazepine site ligands with high affinity, whereas gamma 1-containing receptors could be labeled only by [3H]muscimol. Receptors immunoprecipitated by anti-gamma 2 or anti-gamma 3 antibodies were labeled with [3H]Ro 15-1788 with similar affinities (Kd for anti-gamma 2-immunoprecipitated receptors, 1.9 nM; Kd for anti-gamma 3-immunoprecipitated receptors, 1.7 nM). Immunoprecipitation or Western blot analysis of GABAA receptors solubilized from rat cerebellar or whole-brain preparations indicated that gamma 1 was not present coassembled with any other gamma subunit. Western blot analysis of receptors purified on alpha-specific immunoaffinity resins showed that gamma 1 was predominantly assembled with the alpha 2 subunit. Some GABAA receptors may contain more than one type of gamma subunit. Quantitative immunoprecipitation and Western blot analysis both indicated that gamma 2 and gamma 3 subunits can exist in the same receptor complex. A large proportion of GABAA receptors immunopurified on a gamma 3 affinity resin also appeared to contain a gamma 2 subunit. In contrast, when receptors were purified on a gamma 2 affinity resin a small proportion also appeared to contain a gamma 3 subunit. We conclude that most gamma 1-containing receptors have no other gamma subunit in the same receptor complex but some GABAA receptors contain both gamma 2 and gamma 3 subunits.  相似文献   

7.
Loreclezole, an anticonvulsant and antiepileptic compound, potentiates gamma-aminobutyric acid (GABA) type A receptor function, by interacting with a specific allosteric modulatory site on receptor beta-subunits. A similar selectivity for GABAA receptor beta-subunits is apparent for the direct activation of receptor-operated Cl- channels, by the general anesthetics propofol and pentobarbital. The ability of loreclezole to activate GABAA receptors directly has now been compared, biochemically and electrophysiologically, with that of propofol. In well-washed rat cortical membranes (devoid of endogenous GABA), loreclezole and propofol increased t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding by up to 28% (at 5 microM) and 80% (at 10 microM), respectively. Higher concentrations (50-100 microM) of both compounds inhibited [35S]TBPS binding with great efficacy, an effect mimicked by GABA. In contrast, the benzodiazepine diazepam increased [35S]TBPS binding, but failed to inhibit this parameter, even at high concentrations. At concentrations of 50-100 microM, loreclezole induced inward Cl- currents in the absence of GABA, in Xenopus oocytes expressing human recombinant GABAA receptors, comprised of alpha 1-, beta 2- and gamma 2S-subunits. At 100 microM, the current evoked by loreclezole was 26% of that induced by 5 microM GABA. The current evoked by 100 microM propofol was 98% of that induced by 5 microM GABA. Currents induced by loreclezole, like those evoked by propofol, were potentiated by diazepam in a flumazenil-sensitive manner and blocked by either bicuculline or picrotoxin. These data suggest that loreclezole shares, with propofol, an agonistic action at GABAA receptors containing the beta 2-subunit and that the different efficacies of the two compounds in this regard, may underlie the difference in their pharmacological profiles. The failure of loreclezole to activate GABAA receptors containing the beta 1-subunit may be responsible for its lack of hypnotic effect.  相似文献   

8.
Propofol (2,6-diisopropylphenol), an intravenous general anesthetic in active clinical use today, potentiates the action of gamma-aminobutyric acid (GABA) at the type-A receptor and also directly induces current in the absence of GABA. We expressed different combinations of murine GABA(A) receptor alpha1, beta3 and gamma2 subunits in Xenopus oocytes to investigate the subunit dependence of propofol potentiation of pentobarbital-induced current. Pentobarbital induces current in all beta3-subunit-containing receptors, whereas current gating by GABA requires the presence of both alpha1 and beta3 subunits. Therefore, pentobarbital rather than GABA was used to induce current in order to separate the subunit dependence of current gating from the subunit dependence of potentiating action of propofol. alpha1beta3gamma2, alpha1beta3, beta3gamma2, or beta3 subunit combinations all responded to pentobarbital in a dose-dependent manner. True potentiation was defined as the current magnitude to simultaneous application of pentobarbital and propofol exceeding the additive responses to individual drug applications. A dose-dependent propofol potentiation of pentobarbital-induced current was observed in oocytes injected with alpha1beta3 or alpha1beta3gamma2 but not in beta3gamma2 or beta3 subunits, suggesting that the alpha1 subunit was necessary for this modulatory action of propofol. Further examination of the propofol potentiation in chimeras between the alpha1 and beta3 subunits showed that the extracellular amino-terminal half of the alpha1 subunit was sufficient to support propofol potentiation. The different requirements of the receptor structure for the agonistic (gating) and the potentiating actions suggest that these two actions of propofol are distinct processes mediated through its action at distinct sites.  相似文献   

9.
Sensitivity of GABAA receptors (GABARs) to inhibition by zinc and other divalent cations is influenced by the alpha subunit subtype composition of the receptor. For example, alpha6beta3gamma2L receptors are more sensitive to inhibition by zinc than alpha1beta3gamma2L receptors. We examined the role of a His residue located in the M2-M3 extracellular domain (rat alpha6 H273) in the enhanced zinc sensitivity conferred by the alpha6 subtype. The alpha1 subtype contains an Asn (N274) residue in the equivalent location. GABA-activated whole-cell currents were obtained from L929 fibroblasts after transient transfection with expression vectors containing GABAA receptor cDNAs. Mutation of alpha1 (alpha1(N274H)) or alpha6 (alpha6(H273N)) subtypes did not alter the GABA EC50 of alphabeta3gamma2L receptors. alpha1(N274H)beta3gamma2L receptor currents were as sensitive to zinc as alpha6beta3gamma2L receptor currents, although alpha6(H273N)beta3gamma2L receptor currents had the reduced zinc sensitivity of alpha1beta3gamma2L receptor currents. We also examined the activity of other inhibitory divalent cations with varying alpha subtype dependence: nickel, cadmium, and copper. alpha6beta3gamma2L receptor currents were more sensitive to nickel, equally sensitive to cadmium, and less sensitive to copper than alpha1beta3gamma2L receptor currents. Studies with alpha1 and alpha6 chimeric subunits indicated that the structural dependencies of the activity of some of these cations were different from zinc. Compared with alpha6beta3gamma2L receptor currents, alpha6(H273N)beta3gamma2L receptor currents had reduced sensitivity to cadmium and nickel, but the sensitivity to copper was unchanged. Compared with alpha1beta3gamma2L receptor currents, alpha1(N274H)beta3gamma2L receptor currents had increased sensitivity to nickel, but the sensitivity to cadmium and copper was unchanged. These findings indicate that H273 of the alpha6 subtype plays an important role in determining the sensitivity of recombinant GABARs to the divalent cations zinc, cadmium, and nickel, but not to copper. Our results also suggest that the extracellular N-terminal domain of the alpha1 subunit contributes to a regulatory site(s) for divalent cations, conferring high sensitivity to inhibition by copper and cadmium.  相似文献   

10.
GABA(A) receptor (GABAR) isoforms in the central nervous system are composed of combinations of alpha(1-6), beta(1-4), gamma(1-4), delta(1) and epsilon(1) subunit subtypes arranged in a pentamer. Many regions of the brain express high levels of mRNA encoding several different subunits and even multiple subunit subtypes. The stoichiometry of GABAR isoforms is unclear, and the number and identity of individual subunit subtypes that are coassembled remain uncertain. To examine the role of beta subunit subtypes in the functional properties of GABARS and to determine whether multiple beta subtypes can be coassembled in functional GABARs, plasmids containing cDNAs encoding rat beta1 and/or beta3, alpha5 and gamma2L subtypes were cotransfected into L929 fibroblasts. The properties of the expressed receptor populations were determined using whole-cell and single-channel recording techniques. The alpha5beta1gamma2L isoform was less sensitive to GABA than the alpha5beta3gamma2L isoform. alpha5beta1gamma2L isoform currents were also insensitive to the allosteric modulator loreclezole, while alpha5beta3gamma2L isoform currents were strongly potentiated by loreclezole. Fibroblasts transfected with plasmids containing cDNAs for both beta1 and beta3 subtypes along with alpha5 and gamma2L subtypes produced a receptor population with an intermediate sensitivity to GABA which was insensitive to loreclezole. These results suggest that functional GABARs can be formed that contain two different beta1 subunit subtypes with properties different from receptors that contain only a single beta1 subtype and that the beta1 subunit subtypes influence the response of GABARs to GABA and to the allosteric modulator loreclezole.  相似文献   

11.
Ethanol enhancement of GABAA receptor function has been found in some, but not all, studies. These results suggest the existence of ethanol-sensitive and -resistant receptors that may differ in subunit composition, although methodological differences (e.g., 36Cl- flux versus membrane currents) could also contribute to the different results. To examine these possibilities, we used mouse L(tk-) cells stably transfected with alpha 1 + beta 1 or alpha 1 + beta 1 + gamma 2L GABAA receptor subunit DNAs and compared 36Cl- flux with whole-cell, patch-clamp measurements of GABAA receptor function. Both techniques detected a similar modulation of the GABA receptor by ethanol, flunitrazepam, and pentobarbital. The potentiating action of ethanol required the gamma-subunit and was maximal at a concentration of 10 mM. Similar ethanol potentiation was obtained with brief (20 msec) or long (2 sec) applications of GABA. Analysis of data obtained from individual cells expressing alpha 1 beta 1-gamma 2L subunits showed considerable variability in sensitivity to ethanol, particularly with concentrations of 30 and 100 mM. Ethanol potentiated GABA action if the cells were grown on coverslips coated with polylysine, but had no effect on GABAA receptors of cells grown on uncoated coverslips. Thus, ethanol action was influenced by the growth matrix. Taken together, these data indicate that a gamma-subunit is necessary, but not sufficient, for ethanol sensitivity in this cell system. We suggest that posttranslational processing, particularly receptor phosphorylation, may also be important and that stably transfected cells will be useful in elucidating these events.  相似文献   

12.
1. A comparative study of the actions of structurally diverse allosteric modulators on mammalian (human alpha 3 beta 2 gamma 2L) or invertebrate (Drosophila melanogaster Rdl or a splice variant of Rdl) recombinant GABA receptors has been made using the Xenopus laevis oocyte expression system and the two electrode voltage-clamp technique. 2. Oocytes preinjected with the appropriate cRNAs responded to bath applied GABA with a concentration-dependent inward current. EC50 values of 102 +/- 18 microM; 152 +/- 10 microM and 9.8 +/- 1.7 microM were determined for human alpha 3, beta 1 gamma 2L, Rdl splice variant and the Rdl receptors respectively. 3. Pentobarbitone enhanced GABA-evoked currents mediated by either the mammalian or invertebrate receptors. Utilizing the appropriate GABA EC10, the EC50 for potentiation was estimated to be 45 +/- 1 microM, 312 +/- 8 microM and 837 +/- 25 microM for human alpha 3, beta 1 gamma 2L, Rdl splice variant and Rdl receptors respectively. Maximal enhancement (expressed relative to the current induced by the EC10 concentration of GABA where this latter response = 1) at the mammalian receptor (10.2 +/- 1 fold) was greater that at either the Rdl splice variant (5.5 +/- 1.3 fold) or Rdl (7.9 +/- 0.8 fold) receptors. 4. Pentobarbitone directly activated the human alpha 3 beta 1 gamma 2L receptor with an EC50 of 1.2 +/- 0.03 mM and had a maximal effect amounting to 3.3 +/- 0.4 fold of the response evoked by the EC10 concentration of GABA. Currents evoked by pentobarbitone were blocked by 10-30 microM picrotoxin and potentiated by 0.3 microM flunitrazepam. Pentobarbitone did not directly activate the invertebrate GABA receptors. 5. 5 alpha-Pregnan-3 alpha-ol-20-one potentiated GABA-evoked currents mediated by the human alpha 3 beta 1 gamma 2L receptor with an EC50 of 87 +/- 3 nM and a maximal enhancement of 6.7 +/- 0.8 fold of that produced by the GABA EC10 concentration. By contrast, relatively high concentrations (3-10 microM) of this steroid had only a modest effect on the Rdl receptor and its splice variant. 6. A small direct effect of 5 alpha-pregnan-3 alpha-ol-20-one (0.3-10 microM) was detected for the human alpha 3 beta 1 gamma 2L receptor (maximal effect only 0.08 +/- 0.01 times that of the GABA EC10). This response was antagonized by 30 microM picrotoxin and enhanced by flunitrazepam (0.3 microM). 5 alpha-Pregnan-3 alpha-ol-20-one did not directly activate the invertebrate GABA receptors. 7. Propofol enhanced GABA-evoked currents mediated by human alpha 3 beta 1 gamma 2L and Rdl splice variant receptors with EC50 values of 3.5 +/- 0.1 microM and 8 +/- 0.3 microM respectively. The maximal enhancement was similar at the two receptor types (human 11 +/- 1.8 fold; invertebrate 8.8 +/- 1.4 fold that of the GABA EC10). 8. Propofol directly activated the human alpha 3 beta 1 gamma 2L receptor with an EC50 of 129 +/- 10 microM, and at a maximally effective concentration, evoked a current amounting to 3.5 +/- 0.5 times that elicited by a concentration of GABA producing 10% of the maximal response. The response to propofol was blocked by 10-30 microM picrotoxin and enhanced by flunitrazepam (0.3 microM). Propofol did not directly activate the invertebrate Rdl splice variant receptor. 9. GABA-evoked currents mediated by the human alpha 3 beta 1 gamma 2L receptor were potentiated by etomidate (EC50 = 7.7 +/- 0.2 microM) and maximally enhanced to 8 +/- 0.8 fold of the response to an EC10 concentration of GABA. By contrast, the Rdl, or Rdl splice variant forms of the invertebrate GABA receptor were insensitive to the positive allosteric modulating actions of etomidate. Neither the mammalian nor the invertebrate receptors, were directly activated by etomidate. 10. delta-Hexachlorocyclohexane enhanced GABA-evoked currents with EC50 values of 3.4 +/- 0.1 microM and 3.0 +/- 0.1 microM for the human alpha 3 beta 1 gamma 2L receptor and the Rdl splice variant receptor respectively. The maximal enhancement was 4.5  相似文献   

13.
14.
Gamma-aminobutyric acid type A (GABAA) receptors expressed within the medial preoptic area (mPOA) are known to play a critical role in regulating sexual and neuroendocrine functions. In the rat brain, high levels of expression of the gamma1 subunit mRNA of the GABAA receptor are restricted to a limited number of regions that mediate sexual behaviors, including the mPOA. The biophysical and pharmacological profiles of native gamma1-containing receptors in neurons are unknown. Here, we have characterized the properties of GABAA receptor-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) and currents elicited by fast perfusion of GABA to isolated mPOA neurons of juvenile male and female rats. No significant sex-specific differences were evident in the mean peak amplitude, distribution of event amplitudes, kinetics of current decay, or the frequency of sIPSCs. The profile of modulation of sIPSCs by diazepam, beta-CCM and zolpidem, allosteric modulators that act at the benzodiazepine (BZ) site of the GABAA receptor, support the assertion that mPOA neurons of both sexes express functional gamma1-containing receptors. The ability of zolpidem to modulate both sIPSC amplitude and currents elicited by rapid perfusion of GABA to mPOA neurons differed significantly between the sexes. Zolpidem reversibly induced negative modulation of currents in mPOA neurons isolated from male rats, but had no effect in mPOA neurons from female rats. Concentration-response analysis of responses in neurons acutely isolated from male rats indicated an IC50 of 58 nM with maximal decreases of approximately 50% of control peak current amplitude. In situ hybridization analysis demonstrated that levels of the gamma1 subunit mRNA are significantly higher in mPOA neurons from male than female rats. No significant sex-specific differences were detected in the levels of alpha1, alpha2, or alpha5 mRNAs. These results suggest that native gamma1-containing receptors are expressed in primary neurons of the mPOA and that sex-specific differences in the expression of this subunit may contribute to sexual dimorphism in GABAA receptor modulation by compounds acting at the BZ site.  相似文献   

15.
The vast molecular heterogeneity of brain gamma-aminobutyric acid type A (GABAA) receptors forms the basis for receptor subtyping. Using autoradiographic techniques, we established the characteristics of cerebellar granule cell GABAA receptors by comparing wild-type mice with those with a targeted disruption of the alpha6 subunit gene. Cerebellar granule cells of alpha6(-/-) animals have severe deficits in high affinity [3H]muscimol and [3H]SR 95531 binding to GABA sites, in agonist-insensitive [3H]Ro 15-4513 binding to benzodiazepine sites, and in furosemide-induced increases in tert-[35S]butylbicyclophosphorothionate binding to picrotoxin-sensitive convulsant sites. These observations agree with the known specific properties of these sites on recombinant alpha6beta2/3gamma2 receptors. In the presence of GABA concentrations that fail to activate alpha1 subunit-containing receptors, methyl-6,7-dimethoxy-4-ethyl-beta-carboline (30 microM), allopregnanolone (100 nM), and Zn2+ (10 microM) are less efficacious in altering tert-[35S]butylbicyclophosphorothionate binding in the granule cell layer of the alpha6(-/-) than alpha6(+/+) animals. These data concur with the deficiency of the cerebellar alpha6 and delta subunit-containing receptors in the alpha6(-/-) animals and could also account for the decreased affinity of [3H]muscimol binding to alpha6(-/-) cerebellar membranes. Predicted additional alterations in the cerebellar receptors of the mutant mice may explain a surplus of methyl-6,7-dimethoxy-4-ethyl-beta-carboline-insensitive receptors in the alpha6(-/-) granule cell layer and an increased diazepam-sensitivity in the molecular layer. These changes may be adaptive consequences of altered GABAA receptor subunit expression patterns in response to the loss of two subunits (alpha and delta) from granule cells.  相似文献   

16.
Native gamma-aminobutyric acid type A (GABAA) receptors containing different beta-subunit variants were identified immunobiochemically with antisera recognizing selectively the beta 1-, beta 2-, or beta 3-subunit. As determined by immunoprecipitation, the beta 2-subunit was present in 55-60% of GABAA receptors, while only minor receptor populations contained the beta 1-subunit (16-18%) or the beta 3-subunit (19-25%). Since the sum of these values amounts to about 100%, it is concluded that GABAA receptors largely contain only a single type of beta-subunit. Pharmacologically, receptors containing the beta 2-subunit differed from those containing the beta 1- or beta 3-subunit by their differential affinities for benzodiazepine receptor ligands. The subunit composition was analyzed biochemically in receptors immunoprecipitated by the beta 2-subunit antiserum. The beta 2-subunit was preferentially associated with the alpha 1-subunit (rarely with the alpha 2-subunit) and with the gamma 2-subunit; negligible or no immunoreactivity was detected for the alpha 3-, alpha 5-, or beta 1-subunit. A stringent co-expression of alpha 1- and beta 2-subunits was confirmed by double immunofluorescence staining on the cellular level. Neurons expressing the beta 3-subunit immunoreactivity were largely double labeled by the alpha 2-subunit antiserum. Thus, the subunit combinations alpha 1 beta 2 gamma 2 and alpha 2 beta 3 gamma 2 represent two main GABAA receptor subtypes, which together amount to 75-85% of the diazepam-sensitive GABAA receptors.  相似文献   

17.
In the central nervous system inhibitory neurotransmission is primarily achieved through activation of receptors for gamma-aminobutyric acid (GABA). Three types of GABA receptors have been identified on the basis of their pharmacology and electrophysiology. The predominant type, termed GABAA and a recently identified type, GABAC, have integral chloride channels, whereas GABAB receptors couple to separate K+ or Ca2+ channels via G-proteins. By analogy to nicotinic acetylcholine receptors, native GABAA receptors are believed to be heterooligomers of five subunits, drawn from five classes (alpha, beta, gamma, delta, epsilon/chi). An additional class, called rho, is often categorized with GABAA receptor subunits due to a high degree of sequence similarity. However, rho subunits are capable of forming functional homooligomeric and heterooligomeric receptors, whereas GABAA receptors only express efficiently as heterooligomers. Intriguingly, the pharmacological properties of receptors formed from rho subunits are very similar to those exhibited by GABAC receptors and rho subunits and GABAC responses have been colocalized to the same retina cells, indicating that rho subunits are the sole components of GABAC receptors. In contrast, the propensity of GABAA receptor and rho subunits to form multimeric structures and their coexistence in retinal cells suggests that GABAC receptors might be heterooligomers of rho and GABAA receptor subunits. This review will summarize our current understanding of the molecular composition of GABAC receptors based upon studies of rho subunit assembly.  相似文献   

18.
The gamma 2 subunit is necessary for the expression of the full benzodiazepine pharmacology of GABAA receptors and is one of the major subunits in the brain. In order to determine the location of channels containing the gamma 2 subunit in relation to GABA-releasing terminals on the surface of neurons, a new polyclonal antipeptide antiserum was developed to the gamma 2 subunit and used in high resolution, postembedding, immunoelectron-microscopic procedures. Dual immunogold labelling of the same section for two subunits, and up to three sections of the same synapse reacted for different subunits, were used to characterize the subunit composition of synaptic receptors. The gamma 2 subunit was present in type 2, "symmetrical" synapses in each of the brain areas studied, with the exception of the granule cell layer of the cerebellum. The gamma 2 subunit was frequently co-localized in the same synaptic junction with the alpha 1 and beta 2/3 subunits. The immunolabelling of synapses was coincident with the junctional membrane specialization of the active zone. Immunolabelling for the receptor often occurred in multiple clusters in the synapses. In the hippocampus, the gamma 2 subunit was present in basket cell synapses on the somata and proximal dendrites and in axo-axonic cell synapses on the axon initial segment of pyramidal and granule cells. Some synapses on the dendrites of GABAergic interneurones were densely labelled for the gamma 2, alpha 1 and beta 2/3 subunits. In the cerebellum, the gamma 2 subunit was present in both distal and proximal Purkinje cell dendritic synapses established by stellate and basket cell, respectively. On the soma of Purkinje cells, basket cell synapses were only weakly labelled. Synapses on interneuron dendrites were more densely labelled for the gamma 2, alpha 1 and beta 2/3 subunits than synapses on Purkinje or granule cells. Although immunoperoxidase and immunofluorescence methods show an abundance of the gamma 2 subunit in granule cells, the labelling of Golgi synapses was much weaker with the immunogold method than that of the other cell types. In the globus pallidus, many type 2 synapses were labelled for the gamma 2 subunit together with alpha 1 and beta 2/3 subunits. The results show that gamma 2 and beta 2/3 subunits receptor channels are highly concentrated in GABAergic synapses that also contain the alpha 1 and beta 2/3 subunits. Channels containing the gamma 2 subunit are expressed in synapses on functionally distinct domains of the same neuron receiving GABA from different presynaptic sources. There are quantitative differences in the density of GABAA receptors at synapses on different cell types in the same brain area.  相似文献   

19.
The gamma-aminobutyric acid (GABA)A receptor is a hetero-oligomer consisting of five subunits, the combination of which confers unique pharmacological properties to the receptor. To understand the physiological role of native GABAA receptors, it is critical to determine their subunit compositions. The pharmacological characteristics of human alpha5 beta3 gamma2 and alpha5beta3gamma3 GABAA receptors stably expressed in L(tk-) cells were characterized with the alpha5-selective ligand [3H]L-655,708 and compared with the pharmacological characteristics of [3H]L-655,708 binding sites from rat and human hippocampus. Saturation analyses revealed a 9-fold selective affinity of [3H]L-655,708 for alpha5 beta3 gamma2 receptors (Kd = 1.7 +/- 0.4 nM), compared with alpha5 beta3 gamma3 receptors (Kd = 15 +/- 3 nM). Rat and human hippocampal [3H]L-655,708 binding sites had affinities of 2.2 +/- 0.6 and 1.0 +/- 0.2 nM, respectively, comparable to the affinity of alpha5 beta3 gamma2 receptors. Pharmacological analysis of [3H]L-655,708 binding sites in rat and human hippocampi revealed a strong correlation with the affinities of seven benzodiazepine site ligands for alpha5 beta3 gamma2 but not alpha5 beta3 gamma3 receptors. Immunoprecipitation of [3H]L-655,708 binding sites from rat hippocampus with a gamma2-selective antibody yielded 19 +/- 4% of total benzodiazepine binding sites measured using [3H]Ro15-1788, whereas no specific binding was measured after immunoprecipitation with an anti-gamma3 antibody. Combinatorial immunoprecipitations of [3H]muscimol binding sites with anti-alpha5 and anti-gamma2 or anti-alpha5 and anti-gamma3 antibodies established the preferential expression of alpha5 gamma2 receptors, accounting for 22 +/- 2% of total rat hippocampal GABAA receptors. These observations provide pharmacological and structural evidence for the prevalence of alpha5 beta3 gamma2 GABAA receptors in rat hippocampus, despite the clustering of alpha5 and gamma3 loci on the same chromosome.  相似文献   

20.
In the present study, rundown of gamma-aminobutyric acid (GABA)-activated Cl- channels was studied in recombinant GABAA receptors stably expressed in human embryonic kidney cells (HEK 293), with conventional whole-cell and amphotericin B-perforated patch recording. When [ATP]i was lowered to 1 mM and resting [Ca++]i was buffered to a relatively high level, the response of alpha 3 beta 2 gamma 2 GABAA receptors to relatively low [GABA] (up to 50 microM) did not show rundown in the whole-cell configuration. However, high [GABA] (greater than 200 microM) induced significant rundown, which was observed by decreases in both the maximum GABA-induced current and GABA EC50. Rundown was prevented completely with a solution containing 4 mM Mg(++)-ATP and low resting [Ca++]i, or during perforated patch recording. The magnitude of rundown was comparable in alpha 1 beta 2 gamma 2 and beta 2 gamma 2 receptors. Neither stimulation nor inhibition of protein kinase A or protein kinase C had a significant effect on rundown. However, sodium metavanadate, an inhibitor of protein tyrosine phosphatase, significantly reduced rundown. In addition, inhibition of protein tyrosine kinase activity by either genistein or lavendustin A induced rundown of the GABA response. Inhibition of the Ca++/calmodulin-dependent phosphatase calcineurin with fenvalerate also prevented rundown of the response to GABA. Our results demonstrate that rundown of GABAA receptor function is concentration-dependent, due to depletion of ATP and/or unbuffered [Ca++]i, and does not depend on the presence or subtype of the alpha subunit. We propose that protein phosphorylation at a tyrosine kinase-dependent site, and a distinct unidentified site, which is dephosphorylated by calcineurin, maintains the function of GABAA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号