首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将TiO2引入镁碳复合材料中反应球磨,在快速纳米化的过程中,TiO2纳米颗粒较容易镶嵌到金属Mg和碳的基体中,对复合材料的吸放氢性能具有良好的催化作用。DSC分析表明,(70Mg30C)2TiO2材料的初始放氢温度比MgH2降低了95℃,高峰放氢温度也降低了80℃。当TiO2的添加量为2%(质量分数,下同)时,(70Mg30C)2TiO2反应球磨储氢密度达到最大值4.78%,300℃放氢量达到3.75%。  相似文献   

2.
先采用氢化燃烧合成法制备Mg95Ni5,然后将氢化燃烧合成产物与30%(质量分数)La0.7Mg0.3Ni2.8Co0.5合金进行机械球磨复合,球磨时间分别为5、10、15和20h;将Mg95Ni5的氢化燃烧合成产物直接球磨10h用于对比研究.采用X射线衍射仪、扫描电镜、能谱仪及气体反应控制器研究了材料的相组成、微观形貌、颗粒化学成分以及吸放氢性能.研究表明,球磨10h的Mg95Ni5/La0.7Mg0.3Ni2.8Co0.5复合物具有最佳的吸放氢性能,在373K,50s内基本达到饱和吸氢量3.78%(质量分数);在523K,1800s内放氢量为3.83%(质量分数);其起始放氢温度为425K,与Mg95Ni5相比降低了35K,吸放氢性能的改善与复合物的组织结构密切相关.此外,La0.7Mg0.36Ni2.8Co0.5的加入改善了复合物的放氢动力学性能.  相似文献   

3.
采用氢气反应球磨法,将煤基微晶碳及少量Ni和Al添加到镁粉中在1MPa氢气中球磨3h制得储氢材料67Mg29C3Ni1Al.放氢测试结果表明,温度越高,放氢速度越快,放氢量越大,数据拟舍得出放氢反应为表观一级反应.根据阿伦尼乌斯方程计算得出,在300~350℃范围内,放氢反应表观活化能为(138.0±6)kJ/mol.与储氢材料70Mg30C及纯MgH2相比,微晶碳和催化剂Ni、Al缩短了储氢材料的放氢时间,加快了放氢速度,提高了放氢量,降低了表观活化能,放氢动力学性能得到了改善.  相似文献   

4.
引入微晶碳与Mg、Ni等金属复合,制备了70Mg30C4Ni复合储氢材料,其储氢密度在4.56%(质量分数)以上,放氢量为4.50%(质量分数),放氢时间为8min.260℃恒温放氢在65min内可释放出77%的氢气,说明Ni对镁碳复合储氢材料放氢性能具有较好的催化作用.通过计算,其平均纳米晶粒度为27.6nm.  相似文献   

5.
刘静 《功能材料》2013,44(11):1659-1662
采用磁场辅助烧结法(MASS)制备La0.67Mg0.33Ni3合金,研究了烧结温度对合金相结构、微观形貌及吸放氢性能的影响。结果显示,973~1123K温度下烧结的合金主相均是PuNi3型结构的(La、Mg)Ni3。活化及动力学测试表明,1023K烧结的合金经过2个循环就能完全活化并在30s内达到最大容量的90%,最大吸氢量达到1.58%(质量分数);PCT结果显示,该合金滞后系数为0.519,吸氢量为1.525%(质量分数),放氢量为1.474%(质量分数),放氢率为0.967,各项性能均为最优。  相似文献   

6.
La替代Mg对快淬Mg2Ni型贮氢合金结构及吸放氢动力学的影响   总被引:1,自引:0,他引:1  
为了改善Mg2Ni型贮氢合金的吸放氢动力学性能,用La部分替代合金中的Mg。用快淬工艺制备了Mg2Ni型Mg2-xLaxNi(x=0、0.2、0.4、0.6)贮氢合金,获得长度连续,厚度约为30μm,宽度为25mm的薄带。用XRD、SEM、HRTEM分析了快淬态合金薄带的微观结构,用DSC研究了快淬薄带的热稳定性,应用Sieverts装置研究了快淬态合金的吸放氢动力学,探索了La替代Mg对快淬Mg2Ni型合金吸放氢动力学性能的影响。结果发现,在快淬无La合金中没有出现非晶相,但快淬含La合金显示了以非晶相为主的结构。表明La替代Mg显著提高Mg2Ni型合金的非晶形成能力。快淬合金的热稳定性随La含量的增加而上升。快淬态合金的吸氢量随La含量的增加而减小,但其放氢量在La含量x=0.2时有极大值,这主要归因于La替代Mg导致的结构变化。  相似文献   

7.
以Mg、烟煤和碳化无烟煤为原料,经H2反应球磨、热处理制备了烟煤粘结的纳米镁基储氢材料,研究了储氢材料结构及吸放氢性能,并计算了材料的吸氢动力学参数。结果表明,在600℃热处理时材料中的Mg容易与煤中的C发生反应生成Mg2C3;添加15%(质量分数)烟煤,经500℃热处理能有效粘结纳米Mg颗粒,且未见Mg2C3生成。储氢材料的吸氢速率随温度升高而增大,在2MPa H2下吸氢量在350℃达到最大值,约3.77%(质量分数),在400℃时吸氢量略有下降。根据Arrhenius公式得出储氢材料在300~350℃下吸氢的一级反应表观活化能为56.6kJ/mol H2。用TPD测定了储氢材料的放氢温度,表明材料在250℃开始放氢,388℃时达到放氢高峰。储氢材料中的C可结合少量H,该类H在加热时会以CH4等烃的形式释放出来。  相似文献   

8.
利用PCT测试仪和X射线衍射及场发射扫描电镜等测试手段对NaAlH4 2%(摩尔分数)M(M=Ni、LaCl3、Ce(SO4)2)的吸放氢性能和微观结构进行了研究.结果表明,催化剂的掺杂均可降低NaAlH4的放氢温度,催化剂的催化效果依次为:Ce(SO4)2>LaCl3>Ni.掺杂稀土化合物可改善NaAlH4的吸氢性能,使第一步吸氢反应:3NaH Al (3)/(2)H2Na3AlH6完全发生,特别是Ce(SO4)2的掺杂,使样品发生了部分(1)/(3)Na3AlH6 (2)/(3)Al H2NaAlH4的第二步吸氢反应,吸氢量达到2.808%(质量分数).掺杂Ce(SO4)2有利于NaAlH4 在球磨过程中颗粒尺寸细化,颗粒的细化增强了NaAlH4的活性,导致其吸放氢性能提高.  相似文献   

9.
报道了原料中不同镍含量对氢化燃烧合成Mg2NiH4的影响和生成物中各氢化物的放氢温度等相关研究.氢化燃烧合成的结果表明:当镍含量<54.6%时,随着镍含量增加,氢化燃烧合成物中的Mg2NiH4增加,MgH2减少;DSC-TG曲线的结果表明,Mg2NiH4、Mg2NiH0.3和MgH2分别在650、683、719K附近产生放氢吸热和失重.  相似文献   

10.
以V2O5、TiO2等原料,用自蔓延高温合成法制备了钒基贮氢合金V3TiNi0.56Crx(x=0.1、0.3),用EDXRF、XRD等方法分析了合金的组织成分,用LK98BⅡ微机电化学分析系统、PCT测试仪分别测试了合金的充放电性能和吸放氢性能.结果表明:随Cr含量的增加,合金放电容量和吸氢量均降低;气态放氢平台的宽度变窄、倾斜度增加;电化学放电平台电压和气态放氢平台压力均增加;循环稳定性提高.  相似文献   

11.
刘静  李谦 《功能材料》2013,44(3):380-383
以磁场辅助烧结法(MASS)制备的La0.67Mg0.33Ni3合金为对象,采用XRD、SEM及定容法研究了合金的相结构、微观形貌、活化能力及吸放氢动力学性能。结果显示,MASS制备的合金主相为PuNi3型结构的(La,Mg)Ni3。合金颗粒表面粗糙,呈现多孔结构。1T磁场下合成的合金经过3个循环就可完全活化,最大吸氢量达到1.47%(质量分数)。动力学测试表明,该合金在室温、1MPa氢气下50s内吸氢达到饱和;在333K、0.001MPa氢气下400s内可完成放氢,具有最佳的动力学性能,但合金可逆放氢量较低。  相似文献   

12.
用自蔓延高温合成法制备了钒基贮氢合金V3TiNi0.56Alx(x=0.1、0.3),用EDXRF、XRD等方法分析了合金的组织成分,并对合金进行了充放电性能和吸放氢性能测试。结果表明:随Al含量增加,合金的最大放电容量和吸氢量均减小,但循环稳定性提高;合金的放氢平台均在0.5MPa附近,随Al含量增加,平台宽度变窄、平台倾斜度增加。  相似文献   

13.
用自蔓延高温合成法制备了钒基贮氢合金V3TiNi0.56Alx(x=0.1、0.3),用EDXRF、XRD等方法分析了合金的组织成分,并对合金进行了充放电性能和吸放氢性能测试.结果表明:随Al含量增加,合金的最大放电容量和吸氢量均减小,但循环稳定性提高;合金的放氢平台均在0.5MPa附近,随Al含量增加,平台宽度变窄、平台倾斜度增加.  相似文献   

14.
以Mg、烟煤和碳化无烟煤为原料,经H2反应球磨、热处理制备了烟煤粘结的纳米镁基储氢材料,研究了储氢材料结构及吸放氢性能,并计算了材料的吸氢动力学参数。结果表明,在600℃热处理时材料中的Mg容易与煤中的C发生反应生成Mg2C3;添加15%(质量分数)烟煤、经500℃热处理能有效粘结纳米Mg颗粒,且未见Mg2C3生成。储氢材料的吸氢速率随温度升高而增大,在2MPaH2下吸氢量在350℃达到最大值,约3.77%(质量分数),在400℃时吸氢量略有下降。根据Arrhenius公式,得出储氢材料在300~350℃下吸氢的一级反应表观活化能为56.6kJ/molH2。用TPD测定了储氢材料的放氢温度,表明材料在250℃开始放氢,388℃时达到放氢高峰。储氢材料中的C可结合少量H,该类H在加热时会以CH4等烃的形式释放出来。  相似文献   

15.
氢化铝(AlH_3)具有储氢量高(10.1wt%)等优点,是近年来受到广泛关注的储氢材料之一。本文采用有机合成法制备了AlH_3,并添加了铌基添加剂(Nb、NbC、Nb2O5和NbF5)对其进行改性,系统研究了铌基添加剂对AlH_3放氢性能的影响。研究结果表明,制备的AlH_3纯度较高,不含其他杂质相,起始放氢温度约为130℃,终止放氢温度约为170℃,总放氢量达8.5wt%左右;添加剂Nb和NbC对AlH_3放氢性能有明显的改善作用,起始放氢温度降低到90~95℃;Nb2O5和NbF5对AlH_3的放氢行为影响显著,手工研磨的AlH_3+Nb2O5样品后,AlH_3的起始放氢温度从130℃下降到70℃,终止放氢温度随添加量的增加而降低,手工研磨的AlH_3+1mol%NbF5样品的初始放氢温度降低到60℃,放氢终止温度为140℃。同时,本文分析讨论了铌基添加剂对AlH_3的放氢性能的影响机理。  相似文献   

16.
以聚乙烯醇(PVA)高分子材料为基体,通过氨基甲酸酯化反应在PVA高分子链上引入炔基形成炔基功能化的高分子,利用核磁共振法对炔基化高分子的分子结构及接枝度进行表征。通过化学还原法制备出炔基化高分子负载纳米钯的复合材料,采用激光粒度仪确定纳米钯粒径分布。同时将不同接枝度炔基功能化的PVA和Pd/C催化剂,按照一定的比例采用研磨法制备出吸氢材料。利用PVT法对上述所有的吸氢材料的吸氢性能进行了研究。结果表明,氨基甲酸酯化改性PVA接枝度高的炔基化高分子与Pd/C混合研磨后的吸氢材料的吸氢效果最好,吸氢容量为0.8893 mol/kg。  相似文献   

17.
镁基储氢材料研究现状   总被引:5,自引:0,他引:5  
从镁基储氢材料体系、制备方法及其应用研究等方面对该类材料进行了综述,归纳分析了影响镁基储氢材料吸放氢性能的因素,明确了镁基储氢材料未来的研究方向。  相似文献   

18.
采用机械球磨法制备了Mg(BH4)2-NaNH2复合储氢材料,研究了Mg(BH4)2和NaNH2之间的相互作用及其加热放氢性能。当物质的量比为1∶2时,Mg(BH4)2与NaNH2之间发生反应:Mg(BH4)2+2NaNH2→2NaBH4+Mg(NH2)2。当物质的量比为1∶1时,Mg(BH4)2与NaNH2之间发生反应:Mg(BH4)2+NaNH2→NaBH4+MgBNH6。加热到400℃,该样品分两步进行放氢反应,放氢峰温分别在190℃和369℃,可以放出4.7%(质量分数)氢气。第一步放氢反应为MgBNH6分解产生MgH2,即:MgBNH6→MgH2+BN+2H2。第二步放氢反应为MgH2的分解:MgH2→Mg+H2。  相似文献   

19.
时云卿 《低温工程》2021,(3):54-57,63
车载储氢容器在快速充气过程中会产生显著的温度效应,对复合材料气瓶基体强度、疲劳性能以及有效供氢量具有很大的影响.以氢气为介质,从理论和试验两方面进行了70 Mpa储氢气瓶快速充气的温度效应影响因素研究,以控制充气温度不超过85℃的气瓶工作温度上限.通过简化的理论模型分析得出了充气温度效应的决定因素和影响因素,分析结果在...  相似文献   

20.
本文论述了贮氢材料工作原理,氢化物形成热力学和动力学问题,总结了目前三大系列,15种适用的贮氢合金的成分,性能和 P-T-C 曲线。文章介绍了贮氢材料在贮氢、输送氢,氢气纯化,热泵,空调,氢压缩机,燃氢汽车等方面的多种用途。本文不仅概括了许多最新资料,而且总结了作者多年来从事贮氢材料研究的经验和体会。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号