共查询到15条相似文献,搜索用时 71 毫秒
1.
2.
3.
针对传统序列模式挖掘算法中支持度不能如实体现序列模式兴趣度以及未对报告的序列模式进行质量评估的问题,提出一个基于影响度的统计显著序列模式挖掘算法ISSPM。首先,递归地挖掘出所有满足兴趣度约束的序列模式;然后,使用项集置换方法构建这些序列模式的置换检验零分布;最后,通过该零分布计算出被评估的序列模式的统计度量值,并从上述序列模式中找到所有统计显著序列模式。真实序列记录集合上的实验结果表明,ISSPM算法相较于PSPM、SPDL和PSDSP算法挖掘到的序列模式数量更少但兴趣度更强;仿真序列记录集合上的实验结果表明,ISSPM算法报告的结果中假阳性序列模式数量平均占比为3.39%,且该算法的嵌入模式的发现率均不低于66.7%,明显优于上述3个对比算法。可见,ISSPM算法报告的统计显著序列模式能够体现序列记录集合中更有价值的信息,同时根据这些信息做出的进一步分析和决策也更加可靠。 相似文献
4.
谢婷萱;武优西;王月华;李艳 《小型微型计算机系统》2024,(8):1808-1815
对比序列模式挖掘作为序列模式挖掘领域的一个重要分支,可以有效识别不同类别间差异显著的模式,并被广泛应用在序列分类、特征提取等场景中.但传统的对比序列模式挖掘仅考虑了模式在序列中是否出现,忽略了模式在序列中的重复性;并且需要用户预先设置间隙约束值,导致算法的灵活性较差.为了解决上述问题,本文提出一次性条件下自适应对比序列模式挖掘算法OSCP,该算法采用逆向填充策略计算模式支持度,不仅关注了模式在序列中的具体出现情况,还提高了算法的计算效率;同时采用模式连接策略以减少候选模式数量.此外,本文采用自适应间隙,无需用户预先设置间隙约束,可基于序列的实际特征计算模式的支持度.实验结果表明,OSCP算法的挖掘性能和分类效果均优于其他对比算法. 相似文献
5.
针对传统高效用项集挖掘算法在具有不同类型标签事务中报告假阳性高效用项集的问题,提出两个基于统计显著性检验的高效用项集挖掘算法——FHUI和PHUI算法。这两个算法首先找到所有待检验高效用项集并依据项集长度进行分组;然后,FHUI算法根据项集自身的频率分布生成零分布,PHUI算法根据事务内置换策略或事务间置换策略构造置换事务集合生成零分布。最后,FHUI和PHUI算法从零分布中计算出p值并运用错误发现率剔除假阳性高效用项集。基准事务集合实验结果显示FHUI和PHUI算法能够剔除大量的假阳性高效用项集,在后续分类任务中取得了更高的正确率;仿真事务集合实验结果显示FHUI和PHUI算法报告的项集中假阳性高效用项集数量占比低于4.8%且平均效用高于39 000。实验结果证明,在具有不同类型的标签事务中,FHUI和PHUI算法报告的统计显著高效用项集可靠性和实用性更强。 相似文献
6.
针对现有的对比序列模式挖掘方法主要针对字符序列数据集且难以应用于时间序列数据集的问题,提出一种对比保序模式挖掘(COPM)算法.首先,在候选模式生成阶段,采用模式融合策略减少候选模式数;其次在模式支持度计算阶段,利用子模式的匹配结果计算超模式的支持度;最后,设计了动态最小支持度阈值的剪枝策略,以进一步有效地剪枝候选模式.实验结果表明,在6个真实的时间序列数据集上,在内存消耗方面,COPM算法至少比COPM-o(COPM-original)算法降低52.1%,比COPM-e(COPM-enumeration)算法低36.8%,比COPM-p(COPM-prune)算法降低63.6%;同时在运行时间方面,COPM算法至少比COPM-o算法降低30.3%,比COPM-e算法降低8.8%,比COPM-p算法降低41.2%.因此,在算法性能方面,COPM算法优于COPM-o、COPM-e和COPM-p算法.实验结果验证了COPM算法可以有效挖掘对比保序模式,发现不同类别的时间序列数据集间的差异. 相似文献
7.
针对数据库减量时不断重复挖掘的问题,在已有闭合序列模式算法PosD*的基础上,提出一种减量挖掘算法 DePosD*。通过移动频繁和非频繁闭合序列集合之间的数据,在原有挖掘结果上直接进行更新,减少挖掘的时间。实验结果证明,在减量过程中该算法的时间效率与PosD*相比有所提高。 相似文献
8.
刘佳新 《计算机技术与发展》2012,(5)
为了减少在序列模式挖掘过程中由于重复运行挖掘算法而产生的时空消耗,提出了一种基于频繁序列树的交互式序列模式挖掘算法(ISPM). ISPM算法采用频繁序列树作为序列存储结构,频繁序列树中存储数据库中满足频繁序列树支持度阈值的所有序列模式及其支持度信息.当支持度发生变化时,通过减少本次挖掘所要构造投影数据库的频繁项的数量来缩减投影数据库的规模,从而减少时空消耗.实验结果表明,ISPM算法在时间性能上优于PrefixSpan算法和Inc-Span算法 相似文献
9.
提出算法FDMSP(fast distributed mining of sequential patterns),以解决分布式环境下的序列模式挖掘问题.首先对分布式环境下序列模式的性质进行了分析.算法采用前缀投影技术划分模式搜索空间,利用序列模式前缀指定选举站点统计序列的全局支持计数,利用局部约减、选举约减、计数约减等方法减少候选序列数,同时将算法分为3个子过程异步运行,使得算法具有较低的I/O开销、内存开销和通信开销,从而高效地生成全局序列模式.实验结果显示,在具有海量数据的局域网环境中,FDMSP算法的性能优于将数据集中后采用GSP算法68.5%~99.5%,并且FDMSP算法具有良好的可伸缩性. 相似文献
10.
11.
Mining sequential patterns from large databases has been recognized by many researchers as an attractive task of data mining and knowledge discovery.Previous algorithms scan the databases for many times,which is often unendurable due to the very large amount of databases.In this paper,the authors introduce an effective algorithm for mining sequential patterns from large databases.In the algorithm,the original database is not used at all for counting the support of sequences after the first pass.Rather,a tidlist structure generated in the previous pass is employed for the purpose based on set intersection operations,avoiding the multiple scans of the databases. 相似文献
12.
提出了一种基于H-tree的多维序列模式挖掘算法,首先在序列信息中挖掘序列模式,然后针对每个序列模式,根据包含此模式的所有元组中的多维信息构造H-tree树,挖掘出相应的多维模式,从而得到了多维序列模式。该算法将多维分析方法与序列模式挖掘算法有效地结合在一起,当维度较高时具有较高的性能。 相似文献
13.
王涛 《小型微型计算机系统》2008,29(3):503-507
压缩频繁序列模式集是针对频繁序列模式的全集太大这个问题的一种解决方法.为了得到高质量的压缩效果,先对频繁序列模式聚簇,再从每个簇中挑选出有代表性的序列模式,使这些有代表性的序列模式的数目尽可能地少.一个贪婪算法和一个基于候选集的快速算法是压缩频繁序列模式集的有效算法.有代表性的序列模式集合是频繁序列模式的一种子集,实验结果表明它能取得很好的压缩效果. 相似文献
14.
使用序列模式精简基挖掘序列模式 总被引:3,自引:1,他引:3
传统的序列模式挖掘方法在挖掘由短的频繁序列模式组成的数据库时有良好的性能.但在挖掘长的序列模式或支持度阈值很低时,这些方法可能遇到固有的困难,因为产生的频繁序列模式的数量经常太大.在许多情况下,用户可能只需要那些覆盖许多短模式的长模式.此外,在很多应用中,只要得到产生的频繁序列模式的近似支持度就已足够,而不需要它们的精确支持度.介绍了能将误差控制在确定范围内的频繁序列模式精简基的概念,并开发了一个挖掘这种序列模式精简基的算法.实验结果显示计算频繁序列模式精简基是很有前途的. 相似文献
15.
提出一种基于最大频繁模式、模式相似与属性描述相结合的多维序列模式挖掘算法MSP,该算法包括3个步骤:挖掘数据集中的最大频繁模式,每个频繁模式成为一个模式类;比较数据中各序列项序列与各模式类的包含与相似关系;按照一定的规则抽取与各模式类相关的属性,给出以属性为前件、模式类为后件的多维序列规则为形式的多维序列模式挖掘结果.... 相似文献