首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 73 毫秒
1.
三维视觉已成为当前研究的热点之一。在各种类型的三维数据描述中,点云由于其数据量小而呈现能力细腻被广泛应用于三维数据处理中。现实世界的点云数据通常是通过激光扫描仪、立体相机或低成本RGB-D扫描仪获取的。但是由于遮挡问题、光线反射、材料表面的透明度以及传感器分辨率和视角的限制,导致这些设备直接获取的通常是稀疏或者不完整点云,造成几何信息和语义信息的丢失进而影响到各种下游任务,如机器人操作,导航场景理解等。根据点云补全侧重点不同,将基于深度学习的三维点云补全技术划分为基于体素的形状补全和基于点的形状补全。  相似文献   

2.
随着深度学习和3D传感技术的快速发展,点云分类已在智能分级等领域得到了广泛的应用。为了更好地推进点云分类技术的研究与应用,利用管道体系结构对相关方法的研究进展进行全面而系统的梳理、分析和总结。首先,根据点云数据处理方式的不同,将现有的点云分类方法归纳为间接基于点云的方法和直接基于点云的方法。然后,着重介绍了具有代表性的方法和最新研究成果,同时比较分析了主要方法的核心思想、优缺点、适用范围、应用场景以及实验结果。最后,从四个方面对点云分类的未来发展以及研究方向进行了展望,结果表明,将间接和直接点云的方法进行2D-3D特征融合是未来的一个重要发展方向。  相似文献   

3.
4.
随着三维视觉的快速发展, 基于深度学习的大规模三维点云实时处理成为研究热点. 以三维空间分布无序的大规模三维点云为背景, 综合分析介绍并对比深度学习实时处理三维视觉问题的最新进展, 对点云分割、形状分类、目标检测等方面算法优势与不足进行详细分析, 给出详细的性能分析与优劣对比, 并对点云常用数据集进行简要介绍, 并给出不同数据集的算法性能对比. 最后, 指出未来在基于深度学习方法处理三维点云问题上的研究方向.  相似文献   

5.
高工  杨红雨  刘洪 《计算机应用》2021,41(9):2736-2740
为了增强三维点云人脸识别系统针对多表情、多姿态的鲁棒性,提出一种基于深度学习的点云特征提取网络ResPoint.ResPoint网络使用了分组、采样和局部特征提取(ResConv)等模块,而在ResConv模块中使用了跳跃式连接,因此所提网络对于稀疏点云有很好的识别结果.首先通过人脸几何特征点定位鼻尖点,并以该点为中心...  相似文献   

6.
点云分割是点云数据理解中的一个关键技术,但传统算法无法进行实时语义分割。近年来深度学习被应用在点云分割上并取得了重要进展。综述了近四年来基于深度学习的点云分割的最新工作,按基本思想分为基于视图和投影的方法、基于体素的方法、无序点云的方法、有序点云的方法以及无监督学习的方法,并简要评述;最后分析各类方法优劣并展望未来研究趋势。  相似文献   

7.
综述了基于深度学习的三维点云语义分割方法的研究进展。利用文献分析法,按照数据的表现形式对基于深度学习的三维点云语义分割的方法进行阐述。探讨了近些年的国内外发展现状,分析了目前相关方法的优缺点,并展望了未来发展的趋势。深度学习的加入在点云语义分割技术研究上发挥着越来越重要的作用,推动了制造与包装等领域趋向于智能信息化。根据各类方法的优缺点,利用深度学习技术构建出基于投影、体素、多视图以及直接基于点云的2D-3D组合语义分割框架模型是未来的一个重要研究方向。  相似文献   

8.
为了提高对三维点云目标的识别精确度,提出一种基于深度卷积神经网络(CNN,convolutional neural network)的点云目标识别模型;针对已有的深度卷积点云目标识别网络无法有效提取点云局部拓扑特征的问题,采用迭代最远点采样(FPS,terative farthest point sampling)结合方向卷积编码方式来捕获局部形状特征;并引入空间变换网络(STN,spatial transform network)使点云数据能够自适应进行空间变换和对齐,以解决点云数据旋转性会造成目标识别结果不稳定的问题;实验结果表明:文中提出的点云目标识别方法有效提高了识别精度度,相较于PointNet在ModelNet40和ShapeNetCore两个数据集上分别提高1.2%和1.4%。  相似文献   

9.
近年来,深度传感器和三维激光扫描仪的普及推动了三维点云处理方法的快速发展。点云语义分割作为理解三维场景的关键步骤,受到了研究者的广泛关注。随着深度学习的迅速发展并广泛应用到三维语义分割领域,点云语义分割效果得到了显著提升。主要对基于深度学习的点云语义分割方法和研究现状进行了详细的综述。将基于深度学习的点云语义分割方法分为间接语义分割方法和直接语义分割方法,根据各方法的研究内容进一步细分,对每类方法中代表性算法进行分析介绍,总结每类方法的基本思想和优缺点,并系统地阐述了深度学习对语义分割领域的贡献。然后,归纳了当前主流的公共数据集和遥感数据集,并在此基础上对比主流点云语义分割方法的实验结果。最后,对语义分割技术未来的发展方向进行了展望。  相似文献   

10.
点云作为一种三维环境数据因其具有较高的精度一直被广泛关注并应用于多种场景任务之中。近年来,深度学习进入点云领域,让点云数据处理得到快速发展。针对基于深度学习的点云三维目标检测任务,首先分析了点云数据的特性并列举了日常任务中常用的点云数据集,随后通过单模态的三维目标检测与多模态的三维目标检测两个方向进行分类阐述,并通过单模态与多模态方法在数据集上的表现作比对。最后对当前点云三维目标检测研究的发展趋势进行展望与总结。  相似文献   

11.
深度学习在2维图像等结构化数据处理中表现出了优越性能,对非结构化的点云数据分析处理的潜力已经成为计算机图形学的重要研究方向,并在机器人、自动驾驶、虚拟及增强现实等领域取得一定进展.通过回顾近年来3维点云处理任务的主要研究问题,围绕深度学习在3维点云形状分析、结构提取、检测和修复等方向的应用,总结整理了典型算法.介绍了点云拓扑结构的提取方法,然后对比分析了变换、分类分割、检测跟踪、姿态估计等方向的以构建神经网络为主要研究方法的进展.最后,总结常用的3维点云公开数据集,分析对比了各类方法的特点与评价指标,指出其优势与不足,并从不同角度对基于深度学习的方法处理点云数据所面临的挑战与发展方向进行了讨论.  相似文献   

12.
针对采机场跑道异物FOD(ForeignObjectDebris)检测问题,本文设计了一套基于智能车载3D相机采集路面信息并进行异物检测的系统.此系统通过深度图像的深度量化值分布差异初步筛除正常路面,再经过点云异常值过滤与不均匀降样算法对参数进行纠正和数据量缩减,精简后的点云通过对路面数据适应性改进的网络进行异物检测....  相似文献   

13.
随着点云采集技术的发展和三维应用需求的增加, 实际场景要求针对流动数据持续动态地更新点云分析网络. 对此, 提出了双重特征增强的三维点云类增量学习方法, 通过增量学习使点云目标分类技术能够适应新数据中不断出现新类别目标的场景. 该方法通过对点云数据特性和旧类信息的研究分别提出了差异性局部增强模块和知识注入网络, 以缓解类增量学习中的新类偏好问题. 具体而言, 差异性局部增强模块通过感知丰富的局部语义, 表征出三维点云物体中不同的局部结构特性. 随后, 根据目标中每个局部结构的全局信息获得各个局部的重要性权重, 强化对差异性局部特征的感知, 从而提高新旧类特征差异性. 另外, 知识注入网络将旧模型中的旧知识注入新模型的特征学习过程中, 增强后的混合特征能够更有效缓解旧类信息不足导致的新类偏好加剧现象. 在三维点云数据集ModelNet40, ScanObjectNN, ScanNet, ShapeNet上的实验表明, 该方法与现有最优方法相比, 在4个数据集上的平均增量准确率有2.03%、2.18%、1.65%、1.28% 提升.  相似文献   

14.
International Journal of Computer Vision - Zero-shot learning, the task of learning to recognize new classes not seen during training, has received considerable attention in the case of 2D image...  相似文献   

15.
点云数据被广泛用于多种三维场景,深度学习凭借提取特征自动化、泛化能力强等优势在三维点云的应用领域快速发展,逐渐成为点云分类的主流研究方法。根据提取方式的不同,将现有算法归纳为传统方法以及深度学习算法。着重介绍基于深度学习的代表性方法和最新研究,总结其基本思想以及优缺点,对比分析主要方法的实验结果;展望深度学习在点云分类领域的未来工作以及研究发展方向。  相似文献   

16.
为了提高机载激光雷达数据的分类精度和避免耗时的点云多特征提取,本文在点云去噪的基础上,对点云数据进行相对高程的特征提取,提出一种基于PCA数据降维与Point-Net相结合而形成的网络模型,并将获取的相对高程特征和原始特征经过降维处理后输入到网络中.运用Point-Net网络模型提取的全局特征进行点云分类,返回每个点分...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号