首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对本煤层瓦斯抽采钻孔的合理布置问题,通过建立钻孔抽采瓦斯的渗流场控制方程和煤层变形场控制方程,结合钻孔抽采瓦斯的初始及边界条件,推导出钻孔抽采瓦斯渗流的固气耦合数学模型.以石壕煤矿本煤层单一顺层钻孔瓦斯抽采为工程实例,基于研究区域的煤层瓦斯赋存特征,采用数值模拟计算方法,获得了本煤层单一顺层钻孔周围煤层瓦斯压力、煤层瓦斯渗透率、煤层瓦斯渗流速度和煤层变形的分布规律.确定了本煤层单一顺层钻孔抽采瓦斯的有效影响半径,从而为本煤层单一顺层瓦斯抽采钻孔的优化布置提供了依据.研究结果表明,石壕煤矿本煤层单一顺层钻孔抽采瓦斯的有效半径分别为4 m左右;在延长钻孔抽放时间不到20%的情况下,减少了钻孔工程量50%左右,抽采效果良好.  相似文献   

2.
刘朝阳 《山西冶金》2022,(3):103-105
针对煤矿井下高瓦斯、低透气性煤层在综采作业时所面临的瓦斯抽采困难的问题,提出了一种新的基于水力压裂技术,通过进行钻孔优化、精确分析水力压裂左右范围等,实现了降低煤层突出系数,提高瓦斯抽采效果的目的。根据实际应用表明,该技术能够将煤层透气性系数提升34.7倍,将煤层内瓦斯的抽采流量提升了58.6%以上,有效提升了井下瓦斯治理成本和综采安全性。  相似文献   

3.
武少东 《山西冶金》2024,(1):223-225
针对7105工作面瓦斯涌出量大的问题,结合现场情况以及煤层赋存情况,提出采用高位瓦斯抽采钻孔+顶板定向长钻孔+地面瓦斯抽采相结合的方式进行治理。高位瓦斯抽采钻孔分为高位裂隙瓦斯钻孔和高位拦截钻孔,可实现采空区顶板裂隙瓦斯抽采并拦截上覆3号煤层卸压钻孔;利用顶板定向长钻孔钻进距离长、钻孔轨迹可控的优点,实现顶板瓦斯长距离接抽;利用地面钻孔钻进方便、效率高以及抽采量大的优点,实现7105采空区内及3号煤层卸压瓦斯等抽采。采用以上瓦斯治理措施布置方案后,7105工作面回风隅角、回风巷瓦斯浓度均在安全范围内且波动较小,采面瓦斯涌出量较小,可为采面安全高效生产创造良好条件。  相似文献   

4.
白波 《山西冶金》2022,(5):144-145+158
对某矿2603综采工作面本煤层瓦斯抽采钻孔、高位裂隙瓦斯抽采钻孔现场应用过程中存在的制约瓦斯抽采效果的因素进行分析,并针对性提出优化措施。现场应用后,本煤层钻孔瓦斯抽采纯量平均提升17.5%、高位钻场瓦斯抽采纯量平均提升50%;同时采面回风巷、回风隅角瓦斯浓度分别被控制在0.6%、0.5%以内,回采期间未出现瓦斯超限事故,优化效果显著。  相似文献   

5.
司飞 《山西冶金》2022,(7):188-190
为有效治理煤矿保护层瓦斯,基于煤与瓦斯突出矿井煤层开采工况,分析了矿井保护层瓦斯来源,设计了定向长钻孔瓦斯治理方案,介绍了定向钻进原理与具体施工方案,并观测了完成钻探后75 d内的,瓦斯实际抽采浓度与纯量,结果表明,采用定向长钻孔瓦斯抽采技术与常规底板卸压钻孔抽采技术相比,瓦斯抽采效果更好的是定向长钻孔瓦斯抽采技术,定向长钻孔瓦斯抽采技术的单日瓦斯抽采纯量可达到常规底板卸压钻孔瓦斯抽采纯量的1.34~2.56倍,可有效治理保护层开采卸压瓦斯,更好的保障保护层安全开采。  相似文献   

6.
文章介绍了广旺公司代池坝煤矿在施工高位钻孔对复合煤层采面顶板围岩及邻近层瓦斯进行研究,提出将瓦斯抽采钻孔沿开采煤层走向布置在煤层顶板上方的裂隙带岩石中,抽采出裂隙带及邻近层大量瓦斯,有效控制住了采面回风及上隅角瓦斯超限,在应用中取得了显著的经济效益和社会效益,为同类型矿井采煤工作面瓦斯治理提供了理论依据和现场参考。  相似文献   

7.
李涛 《山西冶金》2022,(6):122-124
分析了山西某矿智能化开采瓦斯抽采方法及效果。采用分源预测法,预测最大绝对瓦斯涌出量12.9m3/min,最大相对涌出量为10.97 m3/t。瓦斯涌出量本煤层斯涌出为主约为61.44%,邻近层瓦斯涌出量约占38.56%。工作面掘进前,在运巷钻场采用长距离顺层钻孔方法进行区域预抽。工作面掘进期间,在材巷和运巷同步施工钻场,随掘随抽。工作面回采期间,工作面材、运巷本煤层钻孔、4号上预抽钻孔、裂隙带钻孔以及上隅角插管抽采相结合的抽采方法进行治理瓦斯。后期效果考察中,瓦斯抽采纯量为6.31 m3/min,工作面瓦斯预抽率为43.1%,说明抽采方案具体可行,能够满足工作面掘进及回采期间的抽采达标要求。  相似文献   

8.
以镇城底矿28620综采面为研究对象,结合28620综采面的采煤工艺和地质条件,研究该综采面瓦斯浓度较高的原因,并对裂隙带瓦斯抽采机理进行探讨,提出"本煤层钻孔抽采+裂隙带钻孔抽采+瓦斯治理巷大直径钻孔抽采"的瓦斯治理技术。瓦斯治理技术实施后监测设备显示:28620综采面回风流瓦斯浓度控制在0.34%以下,为综采面的安全高效有序生产提供了保障。  相似文献   

9.
为了解决官地煤矿2号煤层开采时,3号煤瓦斯涌入2号煤层造成工作面瓦斯涌出量大、瓦斯浓度易超限的问题,根据2号、3号煤层的地质条件,提出了底抽巷抽采邻近层卸压瓦斯的技术方案,并在官地矿22611工作面进行实施。该方案在3号煤底抽巷两侧施工钻孔,覆盖区域为整个22611工作面下方,并进行瓦斯抽采。结果表明,该方案取得了良好的抽采效果,解决了2号煤层开采过程中存在的瓦斯超限问题。底抽巷抽采瓦斯技术是一种解决邻近层瓦斯涌入有效方法。  相似文献   

10.
冯浩 《山西冶金》2024,(1):207-209
针对矿井回采煤层瓦斯含量高、压力大等问题,提出先回采下覆厚度较薄、瓦斯治理难度相对较低的6号煤层。将6号煤层作为保护层开采,从而消除下覆9号煤层、上覆2号及5号煤层的突出危险性。针对6号煤层10601工作面回采期间上邻近层、下邻近层以及采空区瓦斯涌出量大等问题,提出综合采用高位钻孔、高抽巷、采空区埋管、强化本煤层抽采等方式进行治理。现场应用后,10601工作面回采期间回风隅角、回风流瓦斯浓度分别控制在0.43%、0.32%以内,采面瓦斯涌出量大问题得以较好解决。  相似文献   

11.
针对大采高综采工作面瓦斯治理难题,以西曲矿18401综采工作面为研究对象,通过对工作面多个位置进行瓦斯含量监测,分析了工作面瓦斯来源及瓦斯分布特征规律,提出了本煤层预抽、高位裂隙带抽采、煤柱钻孔综合瓦斯治理技术实现了大采高综采工作面安全高效生产,同时为类似地质条件矿井瓦斯综合治理提供了借鉴。  相似文献   

12.
闫亮 《山西冶金》2021,44(1):74-75,82
针对煤矿生产中涌出的瓦斯威胁着工作面的安全生产,以马兰矿井为研究对象,在分析该矿井地质、煤层、瓦斯涌出情况的基础上,选择斜向钻孔的瓦斯抽采方式,并将所抽采处的瓦斯用于矿井的发电,同时完成了瓦斯发电站设备及系统的选型.  相似文献   

13.
依据Darcy定律,在Navier-Stocks方程的基础上,对祁南煤矿综采工作面采空区瓦斯抽放问题作了计算分析,并进行了CFD数值模拟.从理论上模拟采空区瓦斯聚集过程,直观展示了瓦斯抽采时采空区流态、瓦斯分布变化.把抽放钻孔布置在顶板裂隙内,结合上隅角埋管实施瓦斯抽放,该抽放瓦斯技术起到了对开采工作面上隅角瓦斯的截流作用,现场管路测量显示,可抽出高浓度瓦斯达30%~80%(体积分数),工作面回风瓦斯的体积分数基本控制在0.3%以下.  相似文献   

14.
杨宏伟 《工程科学学报》2012,34(11):1235-1239
通过数值分析和现场试验的手段分析了井下低透气性煤层分段点式水力压裂的原理和过程.井下分段水力压裂意在改变传统压裂的受力方式,使煤体多点受力,相互作用,最后产生压裂的效果.经过在城山煤矿西二采区水力压裂孔的试验,在压裂半径为5~7m条件下,得出了试验地点临界注水压力为14MPa,水压在14~20MPa进行分段点式水力压裂较为适宜,试验过程简单易行,在现有条件下压裂可在5 min内完成,试验地点压裂后钻孔平均抽放瓦斯流量和体积分数明显提高.   相似文献   

15.
顾素清 《冶金与材料》2023,(3):12-13+16
针对新源煤矿2205工作面瓦斯治理问题,采用千米定向钻机技术进行了本煤层瓦斯预抽和回采期间抽采,得到以下结论:千米定向钻机技术在2205工作面瓦斯预抽中抽采达标周期为8个月,本煤层瓦斯预抽抽采浓度大,流量小;回采期间瓦斯抽采流量大,浓度小;回采期间工作面上隅角瓦斯浓度未出现超限现象。  相似文献   

16.
刘婕 《山西冶金》2022,(4):126-127
为进一步提升煤矿生产的安全性,避免瓦斯涌出超标导致爆炸事故的发生,以某矿井的02号煤层为例,在对工作面涌出瓦斯特性参数分析的基础上,根据瓦斯抽采方法的选择原则,并结合煤层赋存条件和巷道布置情况,分别对开采层、邻近层和采空区的瓦斯抽采方法进行设计;最后,对工作面的瓦斯抽采效果进行预测,并取得理想结果。  相似文献   

17.
通过对3号煤层316进风顺槽和316回风顺槽的瓦斯区域抽放,对316回风顺槽条带残余瓦斯压力进行了测定,共测定54个压力,残余瓦斯压力皆小于0.74 MPa,认为316回风顺槽的区域防突措施有效,已消除316回风顺槽工作面煤与瓦斯突出危险。  相似文献   

18.
魏世建 《山西冶金》2022,(3):268-270
在对采面回风隅角瓦斯集聚原因分析基础上,发现采空区以及裂隙瓦斯是导致回风隅角瓦斯浓度偏高的主要原因。为此,针对性提出采用大直径钻孔对采空区瓦斯进行抽采、高位钻孔拦截裂隙瓦斯,现场应用后,大直径钻孔、高位钻孔瓦斯抽采纯量稳定在7.242 m3/min、1.35 m3/min,可明显降低采空区及裂隙瓦斯向回风隅角涌出,同时后续回采过程中回风隅角瓦斯浓度均控制在0.5%以内,瓦斯治理取得显著效果。  相似文献   

19.
针对30703工作面回采期间采空区瓦斯涌出量大问题,提出综合采用定向长钻孔、高位钻孔对采空区顶板裂隙瓦斯进行抽采。结合30703采煤工作面现场实际条件,采用理论分析、数值模拟技术手段分析7#煤开采后覆岩冒落带、裂隙带发育高度,并结合覆岩岩性确定钻孔布置层位。对30703工作面定向长钻孔、高位钻孔布置情况进行详细研讨,并分析瓦斯抽采效果。现场应用后,30703工作面回采期间定向长钻孔、高位钻孔瓦斯抽采纯量可分别达到12.9m3/min、3.51m3/min,采空区瓦斯涌出量大问题得以较好解决。  相似文献   

20.
为解决白羊岭煤矿上隅角瓦斯超限问题,以 15111 工作面为工程背景,结合理论分析、经验公式计算等确定了定向高位钻孔的空间位置,并通过现场施工实验分析了长距离定向高位钻孔和定向顺层钻孔的瓦斯抽采效果。结果表明:15111 工作面施工高位定向钻孔抽采浓度 31.8%~72.3%,单孔混合量 5.2~7.5 m3/min;15108 工作面施工定向顺层钻孔抽采浓度 15.05%~56.6%,单孔混合量 0.384~0.853 m3/min,定向高位钻孔抽采效果、经济效益更好。通过施工长距离定向高位钻孔,取消了上隅角埋管抽采措施,治理了上隅角瓦斯超限。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号