首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
为提高计算机辅助诊断系统(computer-aided diagnosis,CAD)对肺结节的正确检出率,经过实验,提出融合3D-UNet和全连接条件随机场方法 (fully connected conditional random fields)的网络模型,简称CRF 3D-UNet网络,对肺结节进行分割。前端使用3D-UNet网络结构,整合结节的空间信息和上下文信息提取不同分辨率级别的特征,对结节实现粗略分割;后面框架使用全连接条件随机场技术,随机场中考虑像素之间的关联性,编码像素的手工特征对前端的输出进行优化,实现结节的细分割。实验结果表明,该算法有效提高了肺结节分割的准确率,使得分割精度达到93.25%。  相似文献   

2.
3.
为解决肺结节检测方法复杂、耗时且存在检测结果假阳性率高的问题,提出基于双路径网络(daul-path network,DPN)的肺结节自动检测模型。使用DPN自动提取深度特征,结合残差网络和密集连接网络实现特征复用;候选框提取使用三维编码解码网络结构,融合结节空间信息和上下文信息准确定位结节位置,生成多尺度候选框;将网络嵌入基于区域的全卷积网络框架中对结节实现分类。实验结果表明,该算法有效提高了结节检出率和检测速度,灵敏度达到90.5%,一个序列的肺部CT图像的处理时间为5.9 s。  相似文献   

4.
由于CT图像是三维图像,在原始的V-Net模型分割中,易出现结节漏检和边界分割不清晰,以及损失函数Dice训练时不稳定等问题。根据这些问题,提出3D多尺度SE V-Net,简称MSEV-Net网络,同时通过联合损失函数来提高训练的稳定性。该网络模型在V-Net网络的基础上,使用多尺度卷积模块来替换原有的5×5×5卷积,同时在残差连接后加入SE通道注意力模块,通过不同尺度的特征融合和学习不同通道之间的关系,解决肺结节小不易分割的问题。同时在V-Net网络残差连接基础上加一条短跳跃连接,使得整个网络更好利用全局特征。联合损失函数选择Dice和交叉熵损失函数进行融合,可以很好地解决训练不稳定问题。提出的MSEV-Net网络模型和联合损失函数在平均分割准确率PA达到0.998,DSC达到0.837。实验结果表明,该方法在提高肺结节分割精度方面具有一定的效果。  相似文献   

5.
秦源源  张鸿 《计算机应用》2023,(7):2311-2318
针对肺结节计算机辅助检测(CAD)系统中肺结节形态各异难以检测带来的敏感度低、假阳性率高的问题,提出一种基于注意力特征金字塔网络的肺结节检测算法。在第一阶段,以更加紧凑的双路径网络(DPN)为骨干网络,并结合特征金字塔网络(FPN)进行多尺度预测,以获取不同层次的特征信息,同时嵌入全局注意力机制(GAM)来细化学习要强调的语义特征,并提高算法的敏感度;在第二阶段,提出一种假阳性抑制网络,以获得最终分类预测结果;在训练阶段,采用焦点损失函数和多种数据增强技术来处理数据不平衡问题。在公开数据集LUNA16(LUng Nodule Analysis 2016)上的实验结果显示:仅有第一阶段的算法的竞争性能指标(CPM)达到了0.908,而加入假阳性抑制网络后算法的CPM达到了0.933,这与经典算法基于最大强度投影(MIP)的卷积神经网络(CNN)算法相比提升了1.1个百分点;而消融实验的结果表明DPN、FPN、GAM对于提升检测敏感度是有作用的。以上证明了所提出的两阶段检测算法可以获取多尺度结节信息,提高肺结节检测的敏感度,并且降低假阳性率。  相似文献   

6.
深度卷积神经网络在医学图像分割领域运用广泛,目前的网络改进普遍是引入多尺度融合结构,增加了模型的复杂度,在提升精度的同时降低了训练效率。针对上述问题,提出一种新型的WU-Net肺结节图像分割方法。该方法对U-Net网络进行改进,在原下采样编码通路引入改进的残余连接模块,同时利用新提出的dep模块改进的信息通路完成特征提取和特征融合。实验利用LUNA16的数据集对WU-Net和其他模型进行训练和验证,在以结节为尺度的实验中,Dice系数和交并比分别能达到96.72%、91.78%;在引入10%的负样本后,F;值达到了92.41%,相比UNet3+提高了1.23%;在以肺实质为尺度的实验中,Dice系数和交并比分别达到了83.33%、66.79%,相比RU-Net分别提升了1.35%、2.53%。相比其他模型,WU-Net模型的分割速度最快,比U-Net提升了39.6%。结果显示,WU-Net提升肺结节分割效果的同时加快了模型的训练速度。  相似文献   

7.
全景分割是近年来新提出的图像分割任务。现有全景分割模型大都对前景实例对象和背景未定形区采用不同的方式进行特征表示,因此需要额外的后处理和融合操作来处理各种实例重叠和语义冲突问题。全卷积全景分割网络实现了统一的特征表示,省去了这些复杂操作,但其对于前景实例对象的分割准确率不高,对图像中远距离小目标的分割效果不是很理想。针对这些问题,基于全卷积全景分割网络进行改进优化,提出一种多尺度注意力引导的全景分割网络。首先改进特征提取网络,通过在主干网中添加一条自底向上的辅助路径来增强模型的多尺度特征获取能力。其次提出一种注意力模块,通过将空洞空间金字塔池化与通道注意力融合,来引导卷积核更新,生成更匹配的权重。在Cityscapes数据集上与全卷积全景分割网络进行对比实验,图像实例级全景分割质量提高了2.74个百分点,背景未定形区全景分割质量和综合全景分割质量分别提高了1.36个百分点和1.94个百分点,对于交通灯和摩托车等小物体的类别检测准确率分别提高了4.4个百分点和8.3个百分点。提出的全景分割网络综合了全卷积全景分割网络、多尺度特征及注意力机制的优点,使得图像实例级全景分割准确率更高。  相似文献   

8.
马金林  魏萌  马自萍 《计算机应用》2020,40(7):2117-2125
针对U-Net分割小体积肺结节效果较差的问题,提出一种基于深度迁移学习的分割方法,利用分块式叠加微调(BSFT)策略辅助分割肺结节。首先,利用卷积神经网络学习自然图像大数据集的特征信息;然后,将所学特征迁移到进行肺结节图像小数据集分割的网络,从该网络最后一个下采样层开始逐块释放、微调训练,直到网络完成最后一层的叠加;最后,定量分析Dice相似性系数,以确定最佳分割网络。实验结果表明,BSFT在LUNA16肺结节公开数据集上的Dice值达到0.917 9,该策略的性能明显优于主流肺结节分割算法。  相似文献   

9.
由于肺部CT图像的特征信息复杂程度高,经典U型卷积网络对肺结节分割存在准确率较低和误分割等问题.针对这一问题,提出一种改进的U型卷积网络模型.该模型将U-Net网络和DenseNet网络融合,将解码器浅层特征连接至深层特征来增强特征的复用性.通过U-Net网络与卷积条件随机场(ConvCRF)的端到端结合训练来增强边缘特征,解决了边界模糊的问题.提出一种改进的focal loss损失函数,该函数提高了结节所占的权重,解决了正负样本不平衡的问题.在LUNA16数据集中作对比实验验证了模型的性能,分割精准度达到0.9374,敏感度为0.941,该结果证明了改进模型在肺结节分割中更优.  相似文献   

10.
针对计算机断层扫描(CT)影像中肺结节尺寸变化较大、尺寸小且不规则等特点导致的检测敏感度较低的问题,提出了基于特征金字塔网络(FPN)的肺结节检测方法。首先,利用FPN提取结节的多尺度特征,并强化小目标及目标边界细节的特征;其次,在FPN的基础上设计语义分割网络(名为掩模特征金字塔网络(Mask FPN))用于快速准确地分割提取肺实质,作为目标候选区域定位图像;并且,在FPN顶层添加反卷积层,采用多尺度预测策略改进快速区域卷积神经网络(Faster R-CNN)以提高检测性能;最后,针对肺结节数据集的正负样本不平衡问题,在区域候选网络(RPN)模块采用焦点损失函数以提高结节的检出率。所提方法在公开数据集LUNA16上进行实验,结果表明,利用FPN和反卷积层改进的新网络对结节检测效果有一定的帮助,采用焦点损失函数也有一定效果。综合多种改进,当平均每个扫描件的候选结节数为46.7时,所提方法的肺结节检测敏感度指标为95.7%,与其他卷积神经网络方法如Faster R-CNN、UNet等相比,具有较高的敏感性。所提方法能够较好地提取不同尺度上的结节特征,提高CT图像肺结节检测的敏感度,同时对于较小的结节也能有效检测,能更有效地辅助肺癌的诊断治疗。  相似文献   

11.
语义分割是计算机视觉中的基本任务,是对图像中的不同目标进行像素级的分割与分类.针对多尺度的目标分割难题,本文提出了一种基于Res Net网络的方法,通过定义并联支路,将浅层特征图像信息融合到深层特征图像中,提出新的空洞空间金字塔模块,该模块采用并行的不同采样率的空洞卷积进行特征提取与融合,从而更有效的提取不同层的特征以及上下文信息,并且在新模块中加入批规范化计算,增强参数调优的稳定性.本文还采用了Adam自适应优化函数,在训练的过程中,使得每个参数的更新都具有独立性,提升了模型训练的稳定性.本文结果在PASCAL VOC 2012语义分割测试集中取得了77.31%mIOU的成果,优于Deeplab V3的效果.  相似文献   

12.
在CT影像中精准而有效地分割出肺部结节是肺癌早期诊断的关键。然而,肺结节形态的多样性以及周围环境的复杂性,都给肺结节分割的鲁棒性带来了巨大的挑战。为提高CT影像中肺结节分割的准确性,提出了Bi EFP-UNet(bidirectional enhanced feature pyramid UNet)肺结节分割网络。该结构采用端到端的深度学习方法来解决肺结节的分割任务,通过在原始U-Net网络的编码器和解码器结构之间集成一个双向增强型特征金字塔网络(bidirectional enhanced feature pyramid network,Bi EFPN),加强网络对特征的传递与利用;利用Mish激活函数提高分割效率,并消除原始U-Net网络梯度消失的问题。在肺结节公开数据集LUNA16上的实验结果表明,Bi EFP-UNet网络的Dice相似系数(DSC)可达88.32%,其中,Bi EFPN结构带来的提升为5.25个百分点,Mish激活函数带来的提升为1.21个百分点;与原始U-Net网络相比,Bi EFP-UNet网络的DSC提升了6.46个百分点,能有效解决原始U-Net网络对...  相似文献   

13.
为了对CT图像中的肺结节进行准确地分割,提出了一种基于改进的U-Net网络的肺结节分割方法。该方法通过引入密集连接,加强网络对特征的传递与利用,并且可以避免梯度消失的问题,同时采用改进的混合损失函数以缓解类不平衡问题。在LIDC-IDRI肺结节公开数据库上的实验结果表明,该方法达到的Dice相似系数值、准确率和召回率分别为84.48%、85.35%和83.81%。与其他分割网络相比,该方法能够准确地分割出肺结节区域,具有良好的分割性能。  相似文献   

14.
肺癌不断威胁着人类健康,计算机辅助诊断对肺癌诊断将发挥重要的作用.卷积神经网络(CNNs)在对图像的处理上表现出有目共睹的优秀性能,医学Computed Tomography(CT)图像是用来诊断肺癌的主要检查方式,用深度学习分割病灶的方法可以实现端对端的辅助诊断,这将节省医生的诊断时间,为患者争取最佳治疗时间.LIDC-IDRI(The Lung Image Database Consortium)数据集影像中的癌症部分与其他组织部分的放射密度十分接近,而且往往癌症部分非常小,背景具有非常强的相似性.本文使用传统的Sobel算子对图像中放射密度高的部分进行边缘锐化处理,用强化边缘特征的方法解决前景与背景灰度相似的问题,然后在使用传统的分割方法--阈值分割进一步强化.本文减小Regions of Interest(RoIs)的大小以适应肺结节的特征,减少RoIs的个数以避免过多的负类样例训练产生退化的模型;在传统图像增强处理方法和深度学习的结合下,获得了一个优化的Mask R-CNN模型,在LIDC-IDRI数据集上的测试结果中,基于Intersection over Union(IoU)=0.5的标准下的肺结节平均精度mAP达到72.2%,在FPR为0.226时的TPR达到0.915.  相似文献   

15.
针对计算机断层扫描(CT)影像中肺结节检测灵敏度较低,且存在大量假阳性的问题,提出一种改进的U型残差网络用于肺结节检测。采取U-net网络的U型结构并利用残差学习方式构建深层次网络,同时引入自校正卷积增加特征的信息提取能力,进行通道间与局部信息增强,有利于检测不同形态的结节;通过引入的通道注意力机制,对特征提取过程中的特征进行重标定,实现自适应学习特征权重,进一步提高检测的准确率;引入DR loss作为该算法的分类损失函数,用于解决数据正负样本失衡问题。在LUNA16数据集对所提算法进行了验证,CPM得分达到0.901,提高了肺结节检测的灵敏度,而且有效降低了检测结果的平均假阳性个数,可有效辅助放射科医师对肺结节进行检测。  相似文献   

16.
Cancer disease is a deadliest disease cause more dangerous one. By identifying the disease through Artificial intelligence to getting the mage features directly from patients. This paper presents the lung knob division and disease characterization by proposing an enhancement calculation. Most of the machine learning techniques failed to observe the feature dimensions leads inaccuracy in feature selection and classification. This cause inaccuracy in sensitivity and specificity rate to reduce the identification accuracy. To resolve this problem, to propose a Chicken Sine Cosine Algorithm based Deep Belief Network to identify the disease factor. The general technique of the created approach includes four stages, such as pre-processing, segmentation, highlight extraction, and the order. From the outset, the Computerized Tomography (CT) image of the lung is taken care of to the division. When the division is done, the highlights are extricated through morphological factors for feature observation. By getting the features are analysed and the characterization is done dependent on the Deep Belief Network (DBN) which is prepared by utilizing the proposed Chicken-Sine Cosine Algorithm (CSCA) which distinguish the lung tumour, giving two classes in particular, knob or non-knob. The proposed system produce high performance as well compared to the other system. The presentation assessment of lung knob division and malignant growth grouping dependent on CSCA is figured utilizing three measurements to be specificity, precision, affectability, and the explicitness.  相似文献   

17.
为了提升脑胶质瘤分割精度,提出一种结合注意力机制的3D卷积神经网络算法。输入3个不同尺度的图像块,经过9个卷积层和1个分类层后得到3个不同的分类结果,将分类结果与注意力学习到的权重相乘并逐体素相加得到输出。此外该算法采用了一种混合Dice损失函数与Focal损失函数的超参数损失函数。实验表明,该算法的Dice系数在整体区域、核心区域以及增强区域分别达到了95.31%、80.12%、82.25%。与已有的一种脑胶质瘤分割算法deepmedic相比,整体区域、核心区域以及增强区域的Dice系数分别提升了3%、2%、6%。在脑胶质瘤分割方面,具有重要的临床意义。  相似文献   

18.
对于CT影像中检测出的肺部结节, 需要自动判断其是否有癌变风险. 不同于大多数现有的研究方法只区分结节良恶性, 本文提出了一个基于注意力机制的多任务学习模型, 将与结节良恶性相关的语义特征属性一并判断输出, 通过判断9个结节特征(对比度、分叶征、毛刺征、球形度、边缘、纹理、钙化程度、大小以及恶性程度)的同时实现内在特征的共享, 以达到提高各子任务性能的目的. 选择视觉转换器(ViT)模型作为多任务共享特征提取层, 整体模型采用动态加权平均方法来对各子任务的Loss函数进行优化. 在LUNA16数据集上的实验表明, 该学习框架可以提升肺结节癌变风险判断的性能, 且同时对其他语义特征的判断也能提升结果的可解释性.  相似文献   

19.
程晓悦  赵龙章  胡穹  史家鹏 《计算机工程》2020,46(4):247-252,259
针对传统语义分割网络速度慢、精度低的问题,提出一种基于密集层和注意力机制的快速场景语义分割方法.在ResNet网络中加入密集层和注意力模块,密集层部分采用两路传播方式,以更好地获得多尺度目标,并使用分组卷积减少计算量.同时在特征提取网络中加入注意力模块,以减少精度损失.实验结果表明,该方法在保证分割精度的前提下提升了分割速度,在Cityscapes数据集上得到了81.5%的MIOU,速度为42.3 frame/s,在ADE20K数据集上得到了61.8%的MIOU,速度为27.9 frame/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号