共查询到19条相似文献,搜索用时 95 毫秒
1.
推荐系统缓解了互联网数据量剧增带来的信息过载问题,但传统的推荐系统由于数据稀疏和冷启动等问题导致推荐算法的准确性不高.因此,文中提出了一种基于知识图谱和标签感知的推荐算法(Knowledge Graph and Tag-Aware,KGTA).首先,利用项目和用户标签信息,通过知识图谱表示学习捕获低阶与高阶特征,将两个知识图谱中实体和关系的语义信息嵌入低维的向量空间中,从而获得项目和用户的统一表示.其次,分别利用深度神经网络和加入注意力机制的递归神经网络来提取项目和用户的潜在特征.最后,根据潜在特征预测评分.该算法不仅利用了知识图谱和标签的关系信息和语义信息,而且通过深层结构学习了项目和用户的隐含特征.在MovieLens数据集上的实验结果表明,该算法能够有效预测用户评分,提高推荐结果的准确性. 相似文献
2.
针对实际应用中测井解释人员由于经验不足以及测井解释模型所选取的参数不当、差错等,所造成的测井处理解释结果的评价精度不准等问题,提出了一种基于知识图谱的测井储层推荐算法。首先,构建测井领域知识图谱对测井解释操作人员和其测井储层特性信息进行统一表示;其次,通过加入注意力机制和TransR算法对测井领域知识图谱进行补全,再通过连接机制把推荐算法与知识图谱结合起来;最后,根据潜在特征预测并推荐测井领域中储层参数信息。在测井领域数据集上的实验结果表明,该推荐算法在Top-K推荐中K=15时,其准确率、召回率和归一化折损累计增益三个指标比同类算法分别提高了6.21%、8.05%、4.82%,并能够高精度预测和推荐测井领域储层参数信息以及更准确地判断储层油气状况,从而揭示出基于知识图谱构建测井储层推荐算法的研究方案是可行的。 相似文献
3.
推荐系统已经广泛应用于各领域以处理信息过载问题,但传统方法面临着数据稀疏的挑战,且使用矩阵分解也不能很好的捕获抽象的非线性交互.考虑到知识图谱可以提供丰富的边信息,文中提出一种知识图谱增强的神经协同过滤推荐方法.首先获取项目相关的元数据,将其构建为知识图谱,并利用表示学习方法获取图谱中的语义知识;其次,利用结合注意力的邻域传播机制获取图谱中的结构知识,以此增强项目表示;最后将得到的用户和项目表示送入矩阵分解与神经网络中进行推荐.在公开数据集MovieLens上的实验结果表明,该模型能够有效提升推荐结果的准确性. 相似文献
4.
序列推荐系统可以根据用户和物品交互的时间序列信息,精确预测用户下一次交互物品.现有的序列推荐算法存在用户兴趣过渡拟合的问题,导致推荐内容同质化严重,从而无法实现个性化推荐.基于此,本文提出一种融合知识图谱与注意力机制的个性化序列推荐算法(SR-KGA):首先,引入知识图谱,通过图卷积网络对物品进行嵌入表示;其次,通过自注意力机制和多头注意力机制构建序列到序列(seq2seq)模型,最后,在损失函数中加入多样性正则项;实现用交互序列来预测未来可能交互的物品序列,从而进行推荐.通过在真实的数据集上实验,SR-KGA在保证推荐准确度的同时,提升了推荐列表的多样性,实现了用户个性化推荐. 相似文献
5.
针对现有的基于知识图谱推荐算法中,缺乏与用户之间的交互,忽略物品间连接关系的问题,提出了基于知识图谱的用户偏好推荐算法.首先,为了更准确地获得用户对物品的偏好类型,增加知识图谱与用户信息的交互.其次,为知识图谱引入注意力机制,使节点传播中关注相似度更高的节点,并在递归传播中优化了节点的嵌入,将两部分关系权重图叠加得到对... 相似文献
6.
7.
8.
9.
针对协同过滤算法在推荐电影过程中只能考虑电影外部评论而不能考虑电影内部的相似度关系,提出构建知识图谱辅助计算电影内部相似度。已有的电影数据可能是不完整的,因此采用知识图谱推理补全缺失的电影知识。基于TransE模型的知识图谱无法有效描述电影间的片名、演员、导演等复杂的多关系。首先采用改进的TransHR模型表示出电影信息之间的多关系,提升关系表示的准确率;然后通过用户评分矩阵计算电影间相似度;最后将2种相似度融合并应用于矩阵分解的推荐技术中。对比实验结果表明,该算法在召回率、准确率、平均绝对误差MAE等指标上都有所提升。 相似文献
10.
11.
面对海量的在线学习资源,学习者往往面临“信息过载”和“信息迷航”等问题,帮助学习者高效准确地获取适合自己的学习资源来提升学习效果,已成为研究热点.针对现有方法存在的可解释性差、推荐效率和准确度不足等问题,提出了一种基于知识图谱和图嵌入的个性化学习资源推荐方法,它基于在线学习通用本体模型构建在线学习环境知识图谱,利用图嵌入算法对知识图谱进行训练,以优化学习资源推荐中的图计算效率.基于学习者的学习风格特征进行聚类来优化学习者的资源兴趣度,以获得排序后的学习资源推荐结果.实验结果表明,相对于现有方法,所提方法能在大规模图数据场景下显著提升计算效率和个性化学习资源推荐的准确度. 相似文献
12.
考虑到推荐算法存在数据稀疏及模型复杂度较高等问题,提出了一种融合协同知识图谱与优化图注意网络的推荐模型。将用户/项目知识图谱与用户-项目交互图结合为协同知识图谱,嵌入到优化的图注意网络模型中,这不仅可以很好地缓解数据稀疏问题,还能更大程度地挖掘用户的潜在兴趣和高阶关系;使用优化的图卷积网络,通过去除特征转换和非线性激活模块,可以在不影响整体推荐性能的基础上极大地降低模型复杂度;结合基于偏差的注意力机制,及时感知候选项目与用户真实感兴趣项目之间的偏差,提升模型的训练效率。在Movielens数据集和Douban数据集上进行仿真实验,结果表明该算法在推荐性能和时间复杂度方面,相比对比算法均得到了有效的提升。 相似文献
13.
14.
针对知识图谱推荐算法用户端和项目端建模程度不均且模型复杂度较高等问题, 提出融合知识图谱和轻量图卷积网络的推荐算法. 在用户端, 利用用户相似性生成邻居集合, 将用户及其相似用户的交互记录在知识图谱上多次迭代传播, 增强用户特征表示. 在项目端, 将知识图谱中实体嵌入传播, 挖掘与用户喜好相关的项目信息; 接着, 利用轻量图卷积网络聚合邻域特征获得用户和项目的特征表示, 同时采用注意力机制将邻域权重融入实体, 增强节点的嵌入表示; 最后, 预测用户和项目之间的评分. 实验表明, 在Book-Crossing数据集上, 相较于最优基线, AUC和ACC分别提高了1.8%和2.3%. 在Yelp2018数据集上, AUC和ACC分别提高了1.2%和1.4%. 结果证明, 该模型与其他基准模型相比有较好的推荐性能. 相似文献
15.
为了解决信息过载问题,提出了一种融合知识图谱与注意力机制的推荐模型.在该模型中,将知识图谱作为辅助信息进行嵌入,可以缓解传统推荐算法数据稀疏和冷启动问题,并且给推荐结果带来可解释性.为了提升推荐准确率以及捕捉用户兴趣的动态变化,再结合深度学习中的神经网络以及注意力机制生成用户自适应表示,加上动态因子来更好地捕捉用户动态... 相似文献
16.
知识图谱可有效缓解传统协同过滤中的数据稀疏和冷启动问题,因此,近年来在推荐系统中融入知识图谱的方法成为重要的探索方向。然而现有的方法大多将知识图谱的网络结构划分为单独路径或仅利用了一阶邻居信息,造成无法建立整个图上的高阶连通性问题。为解决该问题,提出融合知识图谱和图注意力网络的KG-BGAT模型,并设计了双线性采集器。双线性采集器能够在信息采集阶段获取节点间的特征交互信息,丰富节点表示;图注意力网络通过递归嵌入传播算法将各个节点表示沿图进行传播,能够捕获图中的高阶连通性。在MovieLens-1M数据集上进行了Top-K推荐实验,在推荐列表长度为20时,精确率、召回率和归一化折损累计增益分别为29.4%、24.9%、67.4%,超过了目前主流的CKE、RippleNet、KGCN等融合知识图谱的推荐算法。实验证明提出的方法能够有效提高推荐结果的准确性。 相似文献
17.
针对传统的基于模型的协同过滤推荐算法未能有效利用用户与项目的属性信息以及用户之间与项目之间的关系结构信息, 本文提出一种基于图注意力网络表示学习的协同过滤推荐算法. 该算法使用知识图谱表示节点的属性特征信息和节点间的关系结构信息, 并在用户和项目的同质网络上进行节点的图注意力网络表示学习, 得到用户和项目的网络嵌入特征表示, 最后构建融合网络嵌入信息的神经矩阵分解模型获得推荐结果. 本文在Movielens数据集上与相关算法进行对比实验, 实验证明该算法能优化模型的推荐性能, 提高推荐的召回率HR@K和归一化折损累计增益NDCG@K. 相似文献
18.
目前现有基于模型的推荐算法多是将评分数据输入到深度学习模型中进行训练,得出推荐结果.其缺陷在于无法对预测结果进行可解释性分析.除此之外,无法有效地解决算法的冷启动问题.因此,本文提出一种基于知识图谱和Bi-LSTM的推荐算法,来有效解决算法的可解释性和冷启动问题.首先将获取到的数据集进行预处理,生成预编码向量,根据数据... 相似文献
19.
为解决在线学习中出现的认知过载和学习迷航等问题,针对用户的个性化学习需求,同时考虑知识点之间的逻辑关系,本文将知识图谱融入学习资源推荐模型.首先构建了学科知识图谱、学习资源模型和用户数学模型,综合考虑用户的兴趣偏好、用户知识库与学习资源所涵盖知识点的关联度以建立多目标优化模型.然后使用自适应多目标粒子群算法对模... 相似文献