首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 60 毫秒
1.
深度神经网络在目标检测领域有大量的应用已经落地,然而由于深度神经网络本身存在不可解释性等技术上的不足,导致其容易受到外界的干扰而失效,充分研究对抗攻击方法有助于挖掘深度神经网络易失效的原因以提升其鲁棒性;目前大多数对抗攻击方法都需要使用模型的梯度信息或模型输出的置信度信息,而工业界应用的目标检测器通常不会完全公开其内部信息和置信度信息,导致现有的白盒攻击方法不再适用;为了提升工业目标检测器的鲁棒性,提出一种基于决策的目标检测器黑盒对抗攻击方法,其特点是不需要使用模型的梯度信息和置信度信息,仅利用目标检测器输出的检测框位置信息,策略是从使目标检测器定位错误的角度进行攻击,通过沿着对抗边界进行迭代搜索的方法寻找最优对抗样本从而实现高效的攻击;实验结果表明所提出的方法使典型目标检测器Faster R-CNN在VOC2012数据集上的mAR从0.636降低到0.131,mAP从0.801降低到0.071,有效降低了目标检测器的检测能力,成功实现了针对目标检测器的黑盒攻击。  相似文献   

2.
深度学习技术在不同领域有着广泛的应用, 然而一个训练好的深度学习模型很容易受到干扰而得出错误的结果, 从而引发严重的安全问题. 为了检验深度学习模型的抗干扰性, 提高模型的安全性和鲁棒性, 有必要使用对抗样本进行对抗评估和对抗训练. 有目标的黑盒对抗样本的生成方法具有较好的实用性, 是该领域的研究热点之一. 有目标的黑盒对抗样本生成的难点在于, 如何在保证攻击成功率的前提下提高对抗样本的生成效率. 为了解决这一难点, 本文提出了一种基于快速边界攻击的有目标攻击样本生成方法. 该方法包括线上的搜索和面上的搜索两步. 线上的搜索由单侧折半法来完成, 用于提高搜索效率; 面上的搜索通过自适应调节搜索半径的随机搜索完成, 用于提高搜索的广度. 通过对5组图片的实验结果验证了方法的可行性.  相似文献   

3.
万晨  黄方军 《软件学报》2024,35(5):2543-2565
深度神经网络在许多领域中取得了显著的成果, 但相关研究结果表明, 深度神经网络很容易受到对抗样本的影响. 基于梯度的攻击是一种流行的对抗攻击, 引起了人们的广泛关注. 研究基于梯度的对抗攻击与常微分方程数值解法之间的关系, 并提出一种新的基于常微分方程数值解法-龙格库塔法的对抗攻击方法. 根据龙格库塔法中的预测思想, 首先在原始样本中添加扰动构建预测样本, 然后将损失函数对于原始输入样本和预测样本的梯度信息进行线性组合, 以确定生成对抗样本中需要添加的扰动. 不同于已有的方法, 所提出的方法借助于龙格库塔法中的预测思想来获取未来的梯度信息(即损失函数对于预测样本的梯度), 并将其用于确定所要添加的对抗扰动. 该对抗攻击具有良好的可扩展性, 可以非常容易地集成到现有的所有基于梯度的攻击方法. 大量的实验结果表明, 相比于现有的先进方法, 所提出的方法可以达到更高的攻击成功率和更好的迁移性.  相似文献   

4.
5.
深度学习方法已被广泛应用于恶意软件检测中并取得了较好的预测精度,但同时深度神经网络容易受到对输入数据添加细微扰动的对抗攻击,导致模型输出错误的预测结果,从而使得恶意软件检测失效。针对基于深度学习的恶意软件检测方法的安全性,提出了一种面向恶意软件检测模型的黑盒对抗攻击方法。首先在恶意软件检测模型内部结构参数完全未知的前提下,通过生成对抗网络模型来生成恶意软件样本;然后使生成的对抗样本被识别成预先设定的目标类型以实现目标攻击,从而躲避恶意软件检测;最后,在Kaggle竞赛的恶意软件数据集上展开实验,验证了所提黑盒攻击方法的有效性。进一步得到,生成的对抗样本也可对其他恶意软件检测方法攻击成功,这验证了其具有较强的攻击迁移性。  相似文献   

6.
针对图像识别领域中的黑盒对抗攻击问题,基于强化学习中DDQN框架和Dueling网络结构提出一种黑盒对抗攻击算法.智能体通过模仿人类调整图像的方式生成对抗样本,与受攻击模型交互获得误分类结果,计算干净样本和对抗样本的结构相似性后获得奖励.攻击过程中仅获得了受攻击模型的标签输出信息.实验结果显示,攻击在CIFAR10和C...  相似文献   

7.
丁佳  许智武 《软件学报》2022,33(7):2525-2537
深度神经网络在物体检测、图像分类、自然语言处理、语音识别等众多领域上得到广泛应用.然而,深度神经网络很容易受到对抗样本(即在原有样本上施加人眼无法察觉的微小扰动)的攻击,而且相同的扰动可以跨模型、甚至跨任务地欺骗多个分类器.对抗样本这种跨模型迁移特性,使得深度神经网络在实际生活的应用受到了很大限制.对抗样本对神经网络的威胁,激发了研究者对对抗攻击的研究兴趣.虽然研究者们已提出了不少对抗攻击方法,但是大多数这些方法(特别是黑盒攻击方法)的跨模型的攻击能力往往较差,尤其是对经过对抗训练、输入变换等的防御模型.为此,提出了一种提高对抗样本可迁移性的方法:RLI-CI-FGSM. RLI-CI-FGSM是一种基于迁移的攻击方法,在替代模型上,使用基于梯度的白盒攻击RLI-FGSM生成对抗样本,同时使用CIM扩充源模型,使RLI-FGSM能够同时攻击替代模型和扩充模型.具体而言,RLI-FGSM算法将Radam优化算法与迭代快速符号下降法相结合,并利用目标函数的二阶导信息来生成对抗样本,避免优化算法陷入较差的局部最优.基于深度神经网络具有一定的颜色变换不变性,CIM算法通过优化对颜色变换图像集合...  相似文献   

8.
在黑盒攻击领域,目前主流方法是利用对抗样本迁移性实现对抗攻击,然而此类方法效果不佳。为此提出一种基于访问的黑盒攻击方法,此方法运用有限差分法直接估计样本在目标模型中的损失函数梯度。为提高攻击效率,算法在两方面进行优化:第一,在估计梯度时,固定区域内使用平均像素值代替区域所有像素值进行有限差分,从而每个区域只需计算一次梯度;第二,在迭代生成对抗样本时,提出复用多代梯度生成对抗扰动的思想,显著减少攻击迭代次数。经过大量实验验证,在MNIST、 CIFAR-10和ImageNet中迭代的非目标攻击分别获得了99. 8%、 99. 9%和85. 8%的攻击成功率,领先当今大多数黑盒攻击算法。  相似文献   

9.
深度神经网络已被应用于人脸识别、自动驾驶等场景中,但容易受到对抗样本的攻击。对抗样本的生成方法被分为白盒攻击和黑盒攻击,当对抗攻击算法攻击白盒模型时存在过拟合问题,导致生成对抗样本的迁移性降低。提出一种用于生成高迁移性对抗样本的对抗攻击算法CSA。在每次迭代过程中,通过对输入RGB图片的通道进行拆分,得到三张具有一个通道的输入图片,并对其进行零值填充,获得三张具有三个通道的输入图片。将最终得到的图片与原始RGB输入图片共同传入到模型中进行梯度计算,调整原始梯度的更新方向,避免出现局部最优。在此基础上,通过符号法生成对抗样本。在ImageNet数据集上的实验验证该算法的有效性,结果表明,CSA算法能够有效提高对抗攻击的迁移性,在四种常规训练模型上的攻击成功率平均为84.2%,与DIM、TIM结合所得DI-TI-CSA算法在三种对抗训练黑盒模型上的攻击成功率平均为94.7%,对七种防御模型的攻击成功率平均为91.8%。  相似文献   

10.
目标检测被广泛应用到自动驾驶、工业、医疗等各个领域. 利用目标检测算法解决不同领域中的关键任务逐渐成为主流. 然而基于深度学习的目标检测模型在对抗样本攻击下, 模型的鲁棒性存在严重不足, 通过加入微小扰动构造的对抗样本很容易使模型预测出错. 这极大地限制了目标检测模型在关键安全领域的应用. 在实际应用中的模型普遍是黑盒模型, 现有的针对目标检测模型的黑盒攻击相关研究不足, 存在鲁棒性评测不全面, 黑盒攻击成功率较低, 攻击消耗资源较高等问题. 针对上述问题, 提出基于生成对抗网络的目标检测黑盒攻击算法, 所提算法利用融合注意力机制的生成网络直接输出对抗扰动, 并使用替代模型的损失和所提的类别注意力损失共同优化生成网络参数, 可以支持定向攻击和消失攻击两种场景. 在Pascal VOC数据集和MS COCO数据集上的实验结果表明, 所提方法比目前攻击方法的黑盒迁移攻击成功率更高, 并且可以在不同数据集之间进行迁移攻击.  相似文献   

11.
目前,卷积神经网络在语音识别、图像分类、自然语言处理、语义分割等方面都取得了良好的应用成果,是计算机应用研究最广泛的技术之一。但研究人员发现当向输入中加入特定的微小扰动时,卷积神经网络(CNN)模型容易产生错误的预测结果,这类含有微小扰动的图像被称为对抗样本,CNN模型易受对抗样本的攻击。对抗样本的出现可能会对安全敏感的领域带来潜在的应用威胁。已有较多的防御方法被提出,其中许多方法对特定攻击方法具有较好的防御效果,但由于实际应用中无法知晓攻击者采用的攻击方式,因此提出不依赖攻击方法的通用防御策略是一个值得研究的问题。为有效地防御各类对抗攻击,本文提出了基于局部邻域滤波的对抗攻击检测方法。首先,通过像素间的相关性对图像进行RGB空间切割。其次将相似的图像块组成立方体。然后,基于立方体中邻域的局部滤波进行去噪,即:通过邻域立方体的3个块得到邻域数据的3维标准差,用于Wiener滤波。再将滤波后的块组映射回RGB彩色空间。最后,将未知样本和它的滤波样本分别作为输入,对模型的分类进行一致性检验,如果模型对他们的分类不相同,则该未知样本为对抗样本,否则为良性样本。实验表明本文检测方法在不同模型中...  相似文献   

12.
图卷积网络(GCN)是处理图结构化数据的一种十分重要的方法,最新的研究表明,GCN极易受到对抗性攻击,即通过修改少量数据,就能显著影响GCN的结果.在对GCN的所有对抗攻击中,有一种特殊的对抗攻击方法——通用对抗攻击.这种攻击能产生应用于所有样本的扰动,并使GCN得到错误的结果.本文主要研究针对性通用对抗攻击,通过在现...  相似文献   

13.
深度神经网络拥有出色的特征提取能力,这使它们能够从人类难以察觉和理解的样本中提取和学习特征。这种能力一直是深度神经网络快速发展和广泛部署的推动力,近年来它们在医疗成像、自动驾驶、遥感观测和人脸识别等多个领域都有出色表现。然而,这种强大的特征提取能力也带来了一些潜在的安全风险。研究人员发现,深度神经网络模型很容易受到对抗样本的影响,即使少量精心设计的扰动也会导致模型产生错误的结果。为了探索深度神经网络的安全威胁和模型的鲁棒性,对抗攻击研究成为一项重要工作。在这项研究中,本文提出了一种基于贝叶斯优化的瞬间激光物理对抗攻击方法,利用有效曝光时间和激光的快速性在合适的时机发起真正不引起人眼察觉的瞬间攻击,检验了激光对抗攻击在数字域和物理域的有效性,并探讨了这种攻击方法在自动驾驶场景下可能产生的威胁。此外,在物理实验中验证了瞬间攻击的存在性并对其进行了分析,验证了针对自动驾驶系统的激光攻击存在合适的攻击窗口。  相似文献   

14.
近年来,深度神经网络(deep neural network, DNN)在图像领域取得了巨大的进展.然而研究表明, DNN容易受到对抗样本的干扰,表现出较差的鲁棒性.通过生成对抗样本攻击DNN,可以对DNN的鲁棒性进行评估,进而采取相应的防御方法提高DNN的鲁棒性.现有对抗样本生成方法依旧存在生成扰动稀疏性不足、扰动幅度过大等缺陷.提出一种基于稀疏扰动的对抗样本生成方法——SparseAG (sparse perturbation based adversarial example generation),该方法针对图像样本能够生成较为稀疏并且幅度较小的扰动.具体来讲, SparseAG方法首先基于损失函数关于输入图像的梯度值迭代地选择扰动点来生成初始对抗样本,每一次迭代按照梯度值由大到小的顺序确定新增扰动点的候选集,选择使损失函数值最小的扰动添加到图像中.其次,针对初始扰动方案,通过一种扰动优化策略来提高对抗样本的稀疏性和真实性,基于每个扰动的重要性来改进扰动以跳出局部最优,并进一步减少冗余扰动以及冗余扰动幅度.选取CIFAR-10数据集以及ImageNet数据集,在目标攻击以及非目...  相似文献   

15.
近年来,随着以深度学习为代表的人工智能技术的快速发展和广泛应用,人工智能正深刻地改变着社会生活的各方面.然而,人工智能模型也容易受到来自精心构造的"对抗样本"的攻击.通过在干净的图像或视频样本上添加微小的人类难以察觉的扰动,就能够生成可以欺骗模型的样本,进而使多媒体模型在推理过程中做出错误决策,为多媒体模型的实际应用部...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号