共查询到19条相似文献,搜索用时 70 毫秒
1.
提出了一种高效的增量式模糊聚类算法。该算法仅对新增数据计算相似系数而直接聚类,其结果和广泛运用的传递闭包法、最大支撑树法等算法相同。 相似文献
2.
增量式K-Medoids聚类算法 总被引:3,自引:0,他引:3
聚类是一种非常有用的数据挖掘方法,可用于发现隐藏在数据背后的分组和数据分布信息。目前已经提出了许多聚类算法及其变种,但在增量式聚类算法研究方面所做的工作较少。当数据集因更新而发生变化时,数据挖掘的结果也应该进行相应的更新。由于数据量大,在更新后的数据集上重新执行聚类算法以更新挖掘结果显然比较低效,因此亟待研究增量式聚类算法。该文通过对K-Medoids聚类算法的改进,提出一种增量式K-Medoids聚类算法。它能够很好地解决传统聚类算法在伸缩性、数据定期更新时所面临的问题。 相似文献
3.
增量式CURE聚类算法研究 总被引:3,自引:0,他引:3
聚类是一种非常有用的数据挖掘方法 ,可用于发现隐藏在数据背后的分组和数据分布信息 .目前已经提出了许多聚类算法及其变种 ,但在增量式聚类算法研究方面所作的工作较少 .当数据集因更新而发生变化时 ,数据挖掘的结果也应该进行相应的更新 .由于数据量大 ,在更新后的数据集上重新执行聚类算法以更新挖掘结果显然比较低效 ,因此亟待研究增量式聚类算法 .通过对 CURE聚类算法的改进 ,提出了一种高效的增量式 CU RE聚类算法 .它能够很好的解决传统聚类算法在伸缩性、数据定期更新时所面临的问题 .实验结果显示本算法是一种有效的增量式聚类算法 相似文献
4.
一种增量式模糊聚类算法 总被引:5,自引:2,他引:5
随着数据库中数据的迅速增长,新增数据对聚类结果有很大影响,而重新聚类势必严重浪费计算资源。本文提出了一种增量式的模糊聚类算法,合理地解决了新增数据对象的聚类及类属问题,并应用实例说明了新老算法具有同样的可靠性,但新算法大大提高了聚类分析与知识维护的效率。 相似文献
5.
6.
基于信息压缩矩阵算法的增量式规则挖掘 总被引:2,自引:0,他引:2
在信息等价矩阵的基础上利用粗集理论扩展了矩阵算法,设计了相对核和相对约简以及规则获取算法,提出了增量式规则挖掘的信息压缩矩阵算法。实现了在原有规则集的基础上进行规则和规则参数的增量更新,避免了重复遍历信息向量,降低了算法的时、空复杂度。用实例证明该算法是可靠有效的,为信息系统的规则约简、获取和信息压缩提供了新的思路。 相似文献
7.
基于增量式遗传算法的分类规则挖掘 总被引:11,自引:1,他引:11
分类知识发现是数据挖掘的一项重要任务,目前研究各种高性能和高可扩展性的分类算法是数据挖掘面临的主要问题之一。将遗传算法与分类规则挖掘问题相结合,提出了一种基于遗传算法的增量式的分类规则挖掘方法,并通过实例证明了该方法的有效性。此外,还提出了一种分类规则约简方法,使挖掘的结果更简洁、更易理解。 相似文献
8.
关联规则挖掘中增量式更新算法的研究 总被引:8,自引:1,他引:8
关联规则的更新是数据挖掘技术中的一个重要内容,能否有效地挖掘出动态事务数据库中的频繁项目集或关联规则是衡量一个算法好坏的关键因素。该文系统地介绍了关联规则的增量式更新问题,给出或提出了相应的算法,并举例说明了算法的执行过程。 相似文献
9.
数据挖掘的一个重要方面是挖掘关联规则,目前已提出了包括经典算法Apriori在内的许多算法,而在实际关联规则的挖掘过程中,用户将需要不断调整用于描述用户兴趣程度的阈值:最小支持度和最小置信度。如何维护已发现的关联规则变得至关重要。该文提出的GIUA算法解决了在数据库D不变的情况下,最小支持度和最小置信度发生变化时关联规则的维护问题,最大效率地利用原有结果,通过动态分组将连接步和修剪步的循环减到最少,并尽可能地将挖掘过程并行化。 相似文献
10.
序列模式挖掘的增量式算法的设计原则 总被引:2,自引:0,他引:2
在序列模式的分层算法框架下,从理论上分析并讨论了数据集的渐进性和算法参数的相似性为增量式挖掘带来的启发信息,提出了增量式挖掘算法设计中的4项原则,并结合任务分解原则研究了搜索空间的分割。 相似文献
11.
12.
针对目前室内指纹定位算法存在实时性差、对动态环境适应性不足的问题,提出一种新的基于半监督极限学习机的定位算法.该算法首先通过半监督极限学习机建立初始化位置估计模型,然后利用新增的半标记数据对原定位模型进行动态调整,最后为新增训练数据分配合适惩罚权重,使模型具有时效机制.仿真结果表明,该定位算法在保证定位实时性的同时提高了对动态环境的适应性. 相似文献
13.
对于不确定性数据,传统判断项集是否频繁的方法并不能准确表达项集的频繁性,同样对于大型数据,频繁项集显得庞大和冗余。针对上述不足,在水平挖掘算法Apriori的基础上,提出一种基于不确定性数据的频繁闭项集挖掘算法UFCIM。利用置信度概率表达项集频繁的准确性,置信度越高,项集为频繁的准确性也越高,且由于频繁闭项集是频繁项集的一种无损压缩表示,因此利用压缩形式的频繁闭项集替代庞大的频繁项集。实验结果表明,该算法能够快速地挖掘出不确定性数据中的频繁闭项集,在减少项集冗余的同时保证项集的准确性和完整性。 相似文献
14.
提出一种新的基于向量投影的支持向量机增量式学习算法.该算法根据支持向量的几何分布特点,采用向量投影的方法对初始样本及增量样本在有效地避免预选取失效情况下进行预选取.选取最有可能成为支持向量的样本形成边界向量集,并在其上进行支持向量机训练.通过对初始样本是否满足新增样本集KKT条件的判断,解决非支持向量向支持向量转化的问题,有效地处理历史数据.实验表明,基于向量投影的支持向量机增量算法可以有效地减少训练样本数,积累历史信息,提高训练的速度,从而具有更好的推广能力. 相似文献
15.
16.
基于机器学习的地震异常数据挖掘模型 总被引:1,自引:0,他引:1
研究基于机器学习的地震异常数据挖掘方法.在进行地震异常数据挖掘过程中,由于地震监测系统信号时变性及监测环境的不稳定性,采用传统的方法进行挖掘,其挖掘的精确度较低.为此,提出基于机器学习的地震异常数据挖掘方法.根据机器学习的相关理论获取标准方程组和最小均方误差值,实现异常数据挖掘最优模型的构建,通过计算数据的特征向量,建立地震监测数据特征库,依据获取的概率值实现对监测数据的正确判断,从而完成对地震异常数据的有效挖掘.实验结果表明,利用基于机器学习的地震异常数据挖掘方法,能够有效的提高地震异常数据的挖掘准确度与挖掘效率,保证了地震监测系统的有效性. 相似文献
17.
一种快速支持向量机增量学习算法 总被引:16,自引:0,他引:16
经典的支持向量机(SVM)算法在求解最优分类面时需求解一个凸二次规划问题,当训练样本数量很多时,算法的速度较慢,而且一旦有新的样本加入,所有的训练样本必须重新训练,非常浪费时间.为此,提出一种新的SVM快速增量学习算法.该算法首先选择那些可能成为支持向量的边界向量,以减少参与训练的样本数目;然后进行增量学习.学习算法是一个迭代过程,无需求解优化问题.实验证明,该算法不仅能保证学习机器的精度和良好的推广能力,而且算法的学习速度比经典的SVM算法快,可以进行增量学习. 相似文献
18.