共查询到20条相似文献,搜索用时 62 毫秒
1.
随着深度学习的发展,图像风格转换任务开始使用卷积神经网络实现。针对传统图像转换网络在转换后,保留纹理细节的能力不足的问题,本文基于Justin等人的风格转换模型,优化了转换网络中的残差结构,并结合生成对抗的思想,改进了风格转换模型,使模型能提取图像中更抽象的特征,并对损失函数进行调整,进一步提升生成图像的质量。实验表明,本文方法在进行图像风格转换时,有效提升了风格化效果并且通过比较在多种评价指标下得到的结果,可知图像质量得到提升。 相似文献
2.
3.
深度学习作为机器学习的一大重要分支,近年来在图像处理与自然语言处理领域应用极为广泛,随着深度学习被应用于各行各业,越来越多复杂的问题也随之简化。本文利用深度学习中的卷积神经网络模型进行研究,采用当下较为流行的YOLO框架,设计并实现了一套实用于青藏高原畜牧业动物图像检索的系统,该系统可根据相应需求检索单目标和多目标图像,在多次实验结果反馈中正确率较高,可在一定范围内满足实际应用。 相似文献
4.
图像分类是根据图像的信息将不同类别的图像区分开来,是计算机视觉中重要的基本问题,也是图像检测、图像分割、物体跟踪、行为分析等其他高层视觉任务的基础。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像、声音和文本。该系统基于Caffe深度学习框架,首先对数据集进行训练分析构建深度学习网络,提取数据集图像特征信息,得到数据对应的分类模型,然后以bvlc-imagenet训练集模型为基础,对目标图像进行扩展应用,实现"以图搜图"Web应用。 相似文献
5.
针对深度增量学习可能产生灾难性遗忘的问题,提出双分支迭代的深度增量图像分类方法,使用主网络存储旧类知识,分支网络学习增量数据中的新类知识,并在增量过程中使用主网络的权重优化分支网络的参数.使用基于密度峰值聚类的方法从迭代数据集中筛选典型样本并构建保留集,并加入增量迭代训练中,减轻灾难性遗忘.实验表明,文中方法的性能较优. 相似文献
6.
目标检测是遥感图像信息提取领域中的研究热点之一,具有广泛的应用前景。近些年来,深度学习在计算机视觉领域的发展为海量遥感图像信息提取提供了强大的技术支撑,使得遥感图像目标检测的精确度和效率均得到了很大提升。然而,由于遥感图像目标具有多尺度、多种旋转角度、场景复杂等特点,在高质量标记样本有限的情况下,深度学习在遥感图像目标检测应用中仍面临巨大挑战。从尺度不变性、旋转不变性、复杂背景干扰、样本量少和多波段数据检测5个角度出发,总结了近几年基于深度学习的遥感图像目标检测方法。此外,对典型遥感图像目标的检测难点和方法进行分析和总结,并对公开的遥感图像目标检测数据集进行概述。最后阐述了遥感图像目标检测研究的未来趋势。 相似文献
7.
图像风格迁移是计算机视觉领域的一个热点研究方向.随着深度学习的兴起,图像风格迁移领域得到了突破性的发展.为了推进图像风格迁移领域的发展,对基于深度学习的图像风格迁移的现有研究方法进行综述.对基于深度学习的图像风格迁移方法进行分类和梳理,并对比分析基于卷积神经网络和基于生成对抗网络的风格迁移方法,介绍了图像风格迁移的改进... 相似文献
8.
深度学习作为一个新的机器学习方向,被应用到计算机视觉领域上成效显著.为了解决分布式的尺度不变特征转换(Scale-Invariant Feature Transform,SIFT)算法效率低和图像特征提取粗糙问题,提出一种基于深度学习的SIFT图像检索算法.算法思想:在Spark平台上,利用深度卷积神经网络(Convolutional Neural Network,CNN)模型进行SIFT特征抽取,再利用支持向量机(Support Vector Machine,SVM)对图像库进行无监督聚类,然后再利用自适应的图像特征度量来对检索结果进行重排序,以改善用户体验.在Corel图像集上的实验结果显示,与传统SIFT算法相比,基于深度学习的SIFT图像检索算法的查准率和查全率大约提升了30个百分点,检索效率得到了提高,检索结果图像排序也得到了优化. 相似文献
9.
腺体病变引起的疾病如结肠腺癌、乳腺癌等的发病率逐年增高,病理检查是临床诊断的金标准,从病理图像中准确分割病灶范围对疾病的诊疗至关重要,然而这是一项费时费力的工作,同时与病理医生的水平与经验有关.近年来,计算机辅助诊断系统和深度学习(Deep learning)在医学图像处理领域快速发展并得到广泛应用,为进一步减轻医... 相似文献
10.
目的 图像修复是计算机视觉领域研究的一项重要内容,其目的是根据图像中已知内容来自动地恢复丢失的内容,在图像编辑、影视特技制作、虚拟现实及数字文化遗产保护等领域都具有广泛的应用价值。而近年来,随着深度学习在学术界和工业界的广泛研究,其在图像语义提取、特征表示、图像生成等方面的应用优势日益突出,使得基于深度学习的图像修复方法的研究成为了国内外一个研究热点,得到了越来越多的关注。为了使更多研究者对基于深度学习的图像修复理论及其发展进行探索,本文对该领域研究现状进行综述。方法 首先对基于深度学习图像修复方法提出的理论依据进行分析;然后对其中涉及的关键技术进行研究;总结了近年来基于深度学习的主要图像修复方法,并依据修复网络的结构对现有方法进行了分类,即分为基于卷积自编码网络结构的图像修复方法、基于生成式对抗网络结构的图像修复方法和基于循环神经网络结构的图像修复方法。结果 在基于深度学习的图像修复方法中,深度学习网络的设计和训练过程中的损失函数的选择是其重要的内容,各类方法各有优缺点和其适用范围,如何提高修复结果语义的合理性、结构及细节的正确性,一直是研究者们努力的方向,基于此目的,本文通过实验分析总结了各类方法的主要特点、存在的问题、对训练样本的要求、主要应用领域及参考代码。结论 基于深度学习图像修复领域的研究已经取得了一些显著进展,但目前深度学习在图像修复中的应用仍处于起步阶段,主要研究的内容也仅仅是利用待修复图像本身的图像内容信息,因此基于深度学习的图像修复仍是一个极具挑战的课题。如何设计具有普适性的修复网络,提高修复结果的准确性,还需要更加深入的研究。 相似文献
11.
基于深度学习的人手视觉追踪机器人 总被引:1,自引:0,他引:1
视觉追踪是智能机器人的核心功能之一,广泛应用于自动驾驶、智慧养老等领域.以低成本树莓派作为下位机机器人平台,通过在上位机运行事先训练好的深度学习SSD模型实现对人手的目标检测与视觉追踪.基于谷歌TensorFlow深度学习框架和美国印第安纳大学EgoHands数据集对SSD模型进行训练.机器人和上位机的软件使用Python在Linux系统下编程实现,两者之间通过WiFi进行视频流与追踪控制命令的交互.实测表明,所研制智能机器人的视觉追踪功能具有良好的稳定性和性能. 相似文献
12.
视觉跟踪是计算机视觉的重要研究领域之一。传统的视觉跟踪算法难以很好地解决复杂背景中的跟踪问题,如光线变化、目标发生较大的尺寸和姿态变化或目标被遮挡等。而深度学习的引入为视觉跟踪研究开辟了新的途径。但目前国内外基于深度学习的视觉跟踪研究文献相对较少,为 吸引更多视觉跟踪领域研究者对深度学习进行探索和讨论,并推动视觉跟踪算法的研究,简要介绍了视觉跟踪和深度学习的研究现状,重点分析了基于深度学习的视觉跟踪算法的相关文献,讨论了各算法的优缺点,最后提出了进一步研究的方向以及对基于深度学习的视觉跟踪算法的展望。 相似文献
13.
视觉多目标跟踪是计算机视觉领域的热点问题,然而,场景中目标数量的不确定、目标之间的相互遮挡、目标特征区分度不高等多种难题导致了视觉多目标跟踪现实应用进展缓慢.近年来,随着视觉智能处理研究的不断深入,涌现出多种多样的深度学习类视觉多目标跟踪算法.在分析了视觉多目标跟踪面临的挑战和难点基础上,将算法分为基于检测跟踪(Det... 相似文献
14.
图像的自动标注是图像检索领域一项基础而又富有挑战性的任务。深度学习算法自提出以来在图像和文本识别领域取得了巨大的成功,是一种解决"语义鸿沟"问题的有效方法。图像标注问题可以分解为基于图像与标签相关关系的基本图像标注和基于标注词汇共生关系的标注改善两个过程。文中将基本图像标注问题视为一个多标记学习问题,图像的标签先验知识作为深度神经网络的监督信息。在得到基本标注词汇的基础上,利用原始图像标签词汇的依赖关系与先验分布改善了图像的标注结果。最后将所提出的改进的深度学习模型应用于Corel和ESP图像数据集,验证了该模型框架及所提出的解决方案的有效性。 相似文献
15.
16.
图像超分辨率重建是用低分辨率图像重建出对应的高分辨率图像的过程。目前,图像超分辨率技术已经成功应用于计算机视觉和图像处理领域。近年来,由于深度学习具有能够从大量数据中自动学习特征的能力,因此被广泛应用于图像超分辨率领域中。介绍了图像超分辨重建的背景,详细总结了用于图像超分辨率的深度学习模型,阐述了图像超分辨率技术在卫星遥感图像、医学影像、视频监控、工业检测任务方面的应用。总结了图像超分辨算法的当前研究现状以及未来发展方向。 相似文献
17.
18.
基于深度学习的图像检索系统 总被引:2,自引:0,他引:2
基于内容的图像检索系统关键的技术是有效图像特征的获取和相似度匹配策略.在过去,基于内容的图像检索系统主要使用低级的可视化特征,无法得到满意的检索结果,所以尽管在基于内容的图像检索上花费了很大的努力,但是基于内容的图像检索依旧是计算机视觉领域中的一个挑战.在基于内容的图像检索系统中,存在的最大的问题是“语义鸿沟”,即机器从低级的可视化特征得到的相似性和人从高级的语义特征得到的相似性之间的不同.传统的基于内容的图像检索系统,只是在低级的可视化特征上学习图像的特征,无法有效的解决“语义鸿沟”.近些年,深度学习技术的快速发展给我们提供了希望.深度学习源于人工神经网络的研究,深度学习通过组合低级的特征形成更加抽象的高层表示属性类别或者特征,以发现数据的分布规律,这是其他算法无法实现的.受深度学习在计算机视觉、语音识别、自然语言处理、图像与视频分析、多媒体等诸多领域取得巨大成功的启发,本文将深度学习技术用于基于内容的图像检索,以解决基于内容的图像检索系统中的“语义鸿沟”问题. 相似文献
19.
基于深度特征学习的图像超分辨率重建 总被引:4,自引:0,他引:4
基于学习的图像超分辨率(Super-resolution,SR)算法利用样本先验知识来重建图像,相较于其他重建方法拥有明显的优势,也是近年来研究的热点.论文首先分析了影响图像重建质量的因素,然后对基于卷积神经网络的图像超分辨率重建算法(Super-resolution convolutional neural network,SRCNN)提出了两点改进:我们用随机线性纠正单元(Randomized rectified linear unit,RReLU)去避免原有网络学习中对图像某些重要的信息过压缩,同时我们用NAG(Nesterov's accelerated gradient)方法去加速网络的收敛并且避免了网络在梯度更新的时候产生较大的震荡.最后通过实验验证了我们改进网络可以获得更好的主观视觉评价和客观量化评价. 相似文献
20.
《计算机科学与探索》2017,(3):468-477
对图像检索进行了研究,提出了一种新的分块加权图像检索方法。根据视觉注意机制将图像分成不均匀的若干块以及设置不同的权值,提取每块的视觉特征。首先在HSV颜色空间利用Sobel算子得到图像的边缘信息,计算颜色和边缘方向的色差直方图,同时定义一种结合颜色和边缘方向的结构来获取图像的纹理信息,并用直方图表示;然后连接每个块的直方图作为图像的特征向量进行图像检索。实验选取Corel标准图像库进行检索以及和另外5种图像检索方法进行对比分析,实验结果表明该方法具有较高的检索精确度。 相似文献