首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Bisphenol A (BPA) has been treated with electrochemically generated Fenton's reagent in aqueous medium. Hydroxyl radicals that were formed in Fenton's reagent reacted with the organic substrate producing two different isomers of monohydroxylated product and, upon successive hydroxylation, mainly one dihydroxylated product. Further hydroxylation first degraded one of the aromatic rings, and the side chain thus formed was then cleaved off the other aromatic ring. The second aromatic ring was also degraded upon successive hydroxylations. Small saturated and unsaturated aliphatic acids were the last products prior to mineralization. It was found that use of cuprous/cupric ion pair resulted a faster conversion of BPA and faster mineralization when compared using ferrous/ferric ions, but this happened at the expence of excess electrical charge utilized for an equivalent conversion or mineralization. Degradation by using ferrous/ferric ions was more efficient than cuprous/cupric ions case in terms of total mineralization versus charge utilized, and a mineralization of 82% had been achieved by applying 107.8 mF of charge to a 0.7 mM BPA solution of 0.200 dm3. The rate constant of the monohydroxylation of BPA in the presence of ferrous/ferric ions had been determined as 1.0 x 10(10) M(-1) s(-1) where BPA and salicylic acid competitively reacted with hydroxyl radicals in aqueous medium with the initial concentrations of Fe2+, BPA, and SA of 1.0, 0.5, and 0.5 mM, respectively. In a similar experiment where the initial concentrations of Cu2+, BPA, and SA were 1.0, 0.5, and 0.5 mM, respectively, the corresponding rate constant was determined to be the same as the rate constant obtained for Fe2+ (i.e., 1.0 x 10(10) M(-1) s(-1)). While the use of Cu2+ cannot be advised for processing BPA and similar substrates by using the electro-Fenton technique for both technical and economical reasons, the use of [Fe2+]/[BPA]0 values in the range 3-4 will be sufficient to achieve an efficient mineralization of BPA and similar substrates by the electro-Fenton process in aqueous medium.  相似文献   

2.
A novel electro-Fenton process was developed for wastewater treatment using a modified divided electrolytic system in which H2O2 was generated in situ from electro-generated H2 and O2 in the presence of Pd/C catalyst. Appropriate pH conditions were obtained by the excessive H+ produced at the anode. The performance of the novel process was assessed by Rhodamine B (RhB) degradation in an aqueous solution. Experimental results showed that the accumulation of H2O2 occurred when the pH decreased and time elapsed. The maximum concentration of H2O2 reached 53.1 mg/L within 120 min at pH 2 and a current of 100 mA. Upon the formation of the Fenton reagent by the addition of Fe2+, RhB degraded completely within 30 min at pH 2 with a pseudo first order rate constant of 0.109 ± 0.009 min(-1). An insignificant decline in H2O2 generation and RhB degradation was found after six repetitions. RhB degradation was achieved by the chemisorption of H2O2 on the Pd/C surface, which subsequently decomposed into ?OH upon catalysis by Pd0 and Fe2+. The catalytic decomposition of H2O2 to ?OH by Fe2+ was more powerful than that by Pd0, which was responsible for the high efficiency of this novel electro-Fenton process.  相似文献   

3.
Chemical pathway and kinetics of phenol oxidation by Fenton's reagent   总被引:14,自引:0,他引:14  
Phenol oxidation by Fenton's reagent (H2O2 + Fe2+) in aqueous solution has been studied in depth for the purpose of learning more about the reactions involved and the extent of the oxidation process, under various operating conditions. An initial phenol concentration of 100 mg/L was used as representative of a phenolic industrial wastewater. Working temperatures of 25 and 50 degrees C were tested, and the initial pH was set at 3. The H2O2 and the Fe2+ doses were varied in the range of 500-5000 and 1-100 mg/L, respectively, corresponding to 1-10 times the stoichiometric ratio. A series of intermediates were identified, corresponding mainly to ring compounds and short-chain organic acids. Most significant among the former were catechol, hydroquinone, and p-benzoquinone; the main organic acids were maleic, acetic, oxalic, and formic, with substantially lower amounts of muconic, fumaric, and malonic acids. Under milder operating conditions (H2O2 and Fe2+ at lower concentrations), a great difference was found between the measured total organic carbon (TOC) and the amount of carbon in all analyzed species in the reaction medium. This difference decreased as the doses of H2O2 and Fe2+ increased, indicating that the unidentified compounds must correspond to oxidation intermediates between phenol and the organic acids. To establish a complete oxidation pathway, experiments were carried out using each of the identified intermediates as starting compounds. Dihydroxybenzenes were identified in the earlier oxidation stages. Muconic acid was detected in catechol but not in the hydroquinone and p-benzoquinone oxidation runs; the last two compounds were oxidized to maleic acid. Oxalic and acetic acid appeared to be fairly refractory to this oxidation treatment. A detailed knowledge of the time evolution of the oxidation intermediates is of environmental interest particularly in the case of hydroquinone and p-benzoquinone because their toxicities are several orders of magnitudes higher than that of phenol itself. The time evolution of the intermediates and TOC was fitted to a simple second-order kinetic equation, and the values of the kinetic constants were determined. This provides a simplified approach useful for design purposes.  相似文献   

4.
This paper describes the degradation of tert-butyl alcohol (TBA) in dilute aqueous solution by an O3/UV process. The degradation process was investigated experimentally in a semi-batch reactor under various operational conditions, i.e., ozone gas (O3) dosage, UV light intensity, and water quality in terms of varying bicarbonate concentration. TBA was oxidized rapidly in the O3/UV system, and acetone, hydroxy-iso-butyraldehyde, and formaldehyde were identified as primary intermediates, whereas pyruvaldehyde and acetic, formic, pyruvic, and oxalic acids were generated as a result of further oxidation process. A good organic carbon balance was obtained, indicating that most reaction intermediates have been identified and quantified.  相似文献   

5.
探讨了Fenton/电-Fenton氧化法降解2,4-二氯苯酚影响因素及降解效果。结果显示:Fenton法的最佳工艺条件是pH值为2,3%H2O2投加量为2mL,FeSO4.7H2O投加量为0.30g,去除效率在80%-85%;电-Fenton法的最佳工艺条件是1mol/LNa2SO450mL,电压为5V,pH为4时处理效果最好,去除效率在90%-93%。对比分析研究的结果是Fenton法比电-Fenton法反应速率快、消耗的药品量大、产生的Fe(OH)3沉淀多、去除效果差,但是电耗低。  相似文献   

6.
采用UV+H2O2和UV+H2O2+Fe2+二种高级化学氧化工艺处理硫酸盐苇浆CEH漂白废水,研究了氧化剂用量、Fe2+浓度、初始pH值、处理时间等因素与处理效果(以COD和色度为指标)的关系.研究表明,添加Fe2+可大大加速体系对有机污染物氧化降解,H2O2用量对COD和色度的去除影响显著,硫酸盐苇浆CEH漂白混合废水pH值呈较强的酸性,适合于采用UV+H2O2+Fe2+工艺氧化处理.  相似文献   

7.
The broadband UV irradiation of 1.1 mM trichloroethene (TCE) aqueous solution in the presence of 10.4 mM H2O2 resulted in formic, oxalic, dichloroacetic (DCA), and monochloroacetic (MCA) acids, as organic byproducts. The organic chlorine was converted completely to chloride ion as a final product. TCE and its degradation products were completely mineralized in 30 min, under a volume-averaged UV-C irradiant power of 35.7 W/L from a 1 kW medium-pressure mercury vapor arc lamp. TCE degraded primarily through hydroxyl radical-induced reactions and onlyto a low extentthrough direct UV photolysis and chlorine atom-induced chain reactions. The experimental patterns of TCE, H2O2, and detected reaction products combined with the literature information on radical reactions in the aqueous phase were used to postulate a degradation mechanism and to develop a kinetic model to predict the TCE decay, formation and degradation of byproducts, and pH and oxygen profiles. The agreement between the model calculations and the experimental data is satisfactory.  相似文献   

8.
To develop an understanding of the role that microorganisms play in the transport of (129)I in soil-water systems, bacteria isolated from subsurface sediments were assessed for iodide oxidizing activity. Spent liquid medium from 27/84 bacterial cultures enhanced iodide oxidation 2-10 fold in the presence of H(2)O(2). Organic acids secreted by the bacteria were found to enhance iodide oxidation by (1) lowering the pH of the spent medium, and (2) reacting with H(2)O(2) to form peroxy carboxylic acids, which are extremely strong oxidizing agents. H(2)O(2)-dependent iodide oxidation increased exponentially from 8.4 to 825.9 μM with decreasing pH from 9 to 4. Organic acids with ≥2 carboxy groups enhanced H(2)O(2)-dependent iodide oxidation (1.5-15-fold) as a function of increasing pH above pH 6.0, but had no effect at pH ≤ 5.0. The results indicate that as pH decreases (≤5.0), increasing H(2)O(2) hydrolysis is the driving force behind iodide oxidation. However, at pH ≥ 6.0, spontaneous decomposition of peroxy carboxylic acids, generated from H(2)O(2) and organic acids, contributes significantly to iodide oxidation. The results reveal an indirect microbial mechanism, organic acid secretion coupled to H(2)O(2) production, that could enhance iodide oxidation and organo-iodine formation in soils and sediments.  相似文献   

9.
利用静电自组装法,将羧甲基纤维素(CMC)组装到Fe3O4上得到Fe3O4@CMC,再通过自由基聚合反应将丙烯酸(AA)和丙烯酰胺(AM)接枝交联到Fe3O4@CMC上,制备出F e3O4@CMC-g-p(AA-co-AM)(Fe3O4@hydrogel)微球。利用TEM、XRD、FTIR、TGA、XPS、BET等技术对Fe3O4hydrogel微球进行了表征,并将其作为催化剂应用于类芬顿高级氧化反应中催化降解酸性红73。结果表明:Fe3O4@hydrogel仍为反尖晶石型结构,共聚物CMC-g-p(AA-c o-AM)成功包覆在Fe3O4表面,且含量为17.7%,复合微球平均粒径在10n m左右,饱和磁化强度为44.8 emu/g,BET表面积为73.5m2/g,平均孔直径为8.3nm,为介孔结构。Fe3O4@hydrogel微球对酸性染料废水有良好的催化降解性能,通过调节芬顿反应体系中初始pH值、催化剂用量以及H2O2浓度,得到反应最适条件为pH3.5、H2O210mmol/l、催化剂用量200mg/l。在此条件下3h内能达到对酸性红7399.83%以上的降解。  相似文献   

10.
Recent studies have shown that zerovalent iron (Fe0) may potentially be used as a chemical medium in permeable reactive barriers (PRBs) for groundwater nitrate remediation; however, the effects of commonly found organic and inorganic ligands in soil and sediments on nitrate reduction by Fe0 have not been well understood. A 25.0 mL nitrate solution of 20.0 mg of N L(-1) (1.43 mM nitrate) was reacted with 1.00 g of Peerless Fe0 at 200 rpm on a rotational shaker at 23 degrees C for up to 120 h in the presence of each of the organic acids (3.0 mM formic, 1.5 mM oxalic, and 1.0 mM citric acids) and inorganic acids (3.0 mM HCl, 1.5 mM H2SO4, 3.0 mM H3BO3, and 1.5 mM H3PO4). These acids provided an initial dissociable H+ concentration of 3.0 mM available for nitrate reduction reactions under conditions of final pH < 9.3. Nitrate reduction rates (pseudo-first-order) increased in the order: H3PO4 < citric acid < H3BO3 < oxalic acid < H2SO4 < formic acid < HCl, ranging from 0.00278 to 0.0913 h(-1), corresponding to surface area normalized rates ranging from 0.126 to 4.15 h(-1) m(-2) mL. Correlation analysis showed a negative linear relationship between the nitrate reduction rates for the ligands and the conditional stability constants for the soluble complexes of the ligands with Fe2+ (R2 = 0.701) or Fe3+ (R2 = 0.918) ions. This sequence of reactivity corresponds also to surface adsorption and complexation of the three organic ligands to iron oxides, which increase in the order formate < oxalate < citrate. The results are also consistent with the sequence of strength of surface complexation of the inorganic ligands to iron oxides, which increases in the order: chloride < sulfate < borate < phosphate. The blockage of reactive sites on the surface of Fe0 and its corrosion products by specific adsorption of the inner-sphere complex forming ligands (oxalate, citrate, sulfate, borate, and phosphate) may be responsible for the decreased nitrate reduction by Fe0 relative to the chloride system.  相似文献   

11.
选择木素类模型物愈创木酚作为目标化合物,对UV/Fenton和Fenton体系降解愈创木酚的过程进行研究,结合愈创木酚紫外-可见光谱的变化、愈创木酚去除率和矿化率的比较,对UV/Fenton和Fenton体系降解愈创木酚的机理加以探讨.实验发现,UV/Fenton和Fenton体系不只是单纯的自由基反应,Fe2+还可以和H2 02生成高价铁配合物,通过配合物的电子转移使愈刨木酚得到氧化.  相似文献   

12.
High performance liquid chromatography (HPLC), ultraviolet spectroscopy (UV), and total organic carbon (TOC) analyses show that caffeine is quickly and completely degraded underthe oxidative conditions of the UV/H2O2,TiO2/ UV, and Fenton systems but that the organic carbon content of the solution decreases much more slowly. Continuous on-line and real-time monitoring by electrospray ionization mass (ESI-MS) and tandem mass spectrometric experiments (ESI-MS/MS) as well as high accuracy MS measurements and gas chromatography-mass spectrometry analysis show that caffeine is first oxidized to N-dimethylparabanic acid likely via initial OH insertion to the C4=C8 caffeine double bond. A second degradation intermediate, di(N-hidroxymethyl)parabanic acid, has been identified by ESI-MS and characterized by ESI-MS/MS and high accuracy mass measurements. This polar and likely relatively unstable compound, which is not detected by off-line GC-MS analysis, is likely formed via further oxidation of N-dimethylparabanic acid at both of its N-methyl groups and constitutes an unprecedented intermediate in the degradation of caffeine.  相似文献   

13.
The degradation characteristics and pathways of pentachlorophenol (PCP) by the photo-Fenton systems were studied in H2O2 aqueous solutions, which contained Fe(III) only [H2O2/Fe(III) system] and Fe(III) + humic acid (HA) [H2O2/Fe(III)/HA system] at pH 5.0. Although 40% of the PCP was degraded after 5 h of irradiation in the H2O2/Fe(III) system, more than 90% was degraded in the H2O2/Fe(III)/HA system. This shows that at pH 5.0 the degradation of PCP is clearly enhanced by the presence of HA in the photo-Fenton system. In the H2O2/Fe(III) system, the production of octachlorodibenzo-p-dioxin (OCDD) was detected, and 2-hydroxy nonachlorodiphenyl ether was also identified as a precursor of OCDD. However, no OCDD production was observed in the H2O2/Fe(III)/HA system. This indicates that the presence of HA represses the production of OCDD during the degradation of PCP by the photo-Fenton system. Such an effect by HA can be attributed to a reaction sequence wherein reaction intermediates derived from PCP, such as PCP., are incorporated into HA. This was verified by 13C NMR and pyrolysis-GC/MS studies.  相似文献   

14.
Direct UV photolysis of trichloroethylene (TCE) in dilute aqueous solution generated chloride ions as a major end product and several reaction intermediates, such as formic acid, di- and monochloroacetic acids, glyoxylic acid, and, to a lesser extent, mono- and dichloroacetylene, formaldehyde, dichloroacetaldehyde, and oxalic acid. Under prolonged irradiation, these byproducts underwent photolysis, and a high degree of mineralization (approximately 95%) was achieved. TCE decays through the following major pathways: (1) TCE + h nu --> ClCH=C*Cl + Cl*; (2) TCE (H2O) + h nu --> ClCH(OH)-CHCl2; (3) TCE + h nu --> HC[triple bond]CCl + Cl2; (4) TCE + h nu --> ClC[triple bond]CCl + HCl; (5) TCE + Cl* --> Cl2HC-C*Cl2. A kinetic model was developed to simulate the destruction of TCE and the formation and fate of byproducts in aqueous solution under irradiation with polychromatic light. By fitting the experimental data, the quantum yields for the four photolysis steps were predicted as phi(1) = 0.13, phi(2) = 0.1, phi(3) = 0.032, and phi(4) = 0.092, respectively. The reaction mechanism proposed for the photodegradation of TCE accounts for all intermediates that were detected. The agreement between the computed and experimental patterns of TCE and reaction products is satisfactory given the complexity of the reaction mechanism and the lack of photolytic kinetic parameters that are provided in the literature.  相似文献   

15.
This work describes the effects of simulated solar UV light on the bulk properties of dissolved organic matter (DOM) of bog lake water and on the formation of low-molecular-weight organic acids (LMWOAs). By means of size-exclusion chromatography it was shown that the more hydrophilic moieties of the DOM were preferentially photodegraded while the more hydrophobic ones remained relatively unaffected or were even formed. The combined photochemical-biological degradation proved to be more important than the pure photochemical mineralization. Formic, acetic, pyruvic, oxalic, malonic, and succinic acids were identified as important degradation products. Their contribution to the dissolved organic carbon increased from 0.31% before to 6.4% after 24 h irradiation. About 33% of the bioavailable photoproducts of DOM were comprised of these LMWOAs. The influence of nitrate on the formation of carboxylic acids could not be observed in the investigated system. Kinetic experiments indicated that degradation of LMWOAs occurred simultaneously during irradiation experiments, alpha-oxygen-substituted LMWOAs being more amenable to these processes. Dissolved iron acted as a catalyst of DOM photodegradation and LMWOA photoformation. Copper played an antagonistic role in the irradiation experiments, reducing the formation of formic, acetic, and malonic acids while increasing the formation of oxalic acid.  相似文献   

16.
The electrochemical degradation of methylparathion has been investigated by using Ti/Pt as anode, Stainless Steel 304 as cathode, and sodium chloride as electrolyte. The pesticide is rapidly degraded, but full mineralization is not observed. Degradation products have been monitored through gas chromatography and mass spectrometry, and the overall degradation process has been monitored through dissolved and particulate organic carbon, sulfur, and phosphorus measurements. Several intermediates have been identified, and oxalic, formic, and acetic acids as well as tetraphosphorus trisulfide have been recognized as final products of the degradation process. A proposed mechanism of the process is presented.  相似文献   

17.
The electro-Fenton treatment of sulfachloropyridazine (SCP), a model for sulfonamide antibiotics that are widespread in waters, was performed using cells with a carbon-felt cathode and Pt or boron-doped diamond (BDD) anode, aiming to present an integral assessment of the kinetics, electrodegradation byproducts, and toxicity evolution. H(2)O(2) electrogeneration in the presence of Fe(2+) yielded (?)OH in the solution bulk, which acted concomitantly with (?)OH adsorbed at the anode (BDD((?)OH)) to promote the oxidative degradation of SCP (k(abs,SCP) = (1.58 ± 0.02) × 10(9) M(-1) s(-1)) and its byproducts. A detailed scheme for the complete mineralization was elucidated. On the basis of the action of (?)OH onto four different SCP sites, the pathways leading to total decontamination includes fifteen cyclic byproducts identified by HPLC and GC-MS, five aliphatic carboxylic acids, and a mixture of Cl(-), SO(4)(2-), NH(4)(+), and NO(3)(-) that accounted for 90-100% of initial Cl, S, and N. The time course of byproducts was satisfactorily correlated with the toxicity profiles determined from inhibition of Vibrio fischeri luminescence. 3-Amino-6-chloropyridazine and p-benzoquinone were responsible for the increased toxicity during the first stages. Independent electrolyses revealed that their toxicity trends were close to those of SCP. The formation of the carboxylic acids involved a sharp toxicity decrease, thus ensuring overall detoxification.  相似文献   

18.
Fenton-driven chemical oxidation of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) was accomplished through the addition of iron (Fe) and hydrogen peroxide (H2O2) (15.9 g/L; pH 3). The Fe concentration in GAC was incrementally varied (1020-25 660 mg/kg) by the addition of increasing concentrations of Fe solution (FeSO4-7H2O). MTBE degradation in Fe-amended GAC increased by an order of magnitude over Fe-unamended GAC and H2O2 reaction was predominantly (99%) attributed to GAC-bound Fe within the porous structure of the GAC. Imaging and microanalysis of GAC particles indicated limited penetration of Fe into GAC. The optimal Fe concentration was 6710 mg/kg (1020 mg/kg background; 5690 mg/kg amended Fe) and resulted in the greatest MTBE removal and maximum Fe loading oxidation efficiency (MTBE oxidized (microg)/ Fe loaded to GAC (mg/Kg)). At lower Fe concentrations, the H2O2 reaction was Fe limited. At higher Fe concentrations, the H2O2 reaction was not entirely Fe limited, and reductions in GAC surface area, GAC pore volume, MTBE adsorption, and Fe loading oxidation efficiency were measured. Results are consistent with nonuniform distribution of Fe, pore blockage in H2O2 transport, unavailable Fe, and limitations in H2O2 diffusive transport, and emphasize the importance of optimal Fe loading.  相似文献   

19.
In this study, an innovative E-H2O2/TiO2 (E-H2O2 = electrogenerated hydrogen peroxide) photoelectrocatalytic (PEC) oxidation system was successfully developed for water and wastewater treatment. A TiO2/Ti mesh electrode was applied in this photoreactor as the anode to conduct PEC oxidation, and a reticulated vitreous carbon (RVC) electrode was used as the cathode to electrogenerate hydrogen peroxide simultaneously. The TiO2/Ti mesh electrode was prepared with a modified anodic oxidation process in a quadrielectrolyte (H2SO4-H3PO4-H2O2-HF) solution. The crystal structure, surface morphology, and film thickness of the TiO2/Ti mesh electrode were characterized by X-ray diffraction and scanning electron microscopy. The analytical results showed that a honeycomb-type anatase film with a thickness of 5 microm was formed. Photocatalytic oxidation (PC) and PEC oxidation of 2,4,6-trichlorophenol (TCP) in an aqueous solution were performed under various experimental conditions. Experimental results showed that the TiO2/Ti electrode, anodized in the H2SO4-H3PO4-H2O2-HF solution, had higher photocatalytic activity than the TiO2/Ti electrode anodized in the H2SO4 solution. It was found that the maximum applied potential would be around 2.5 V, corresponding to an optimum applied current density of 50 microA cm(-2) under UV-A illumination. The experiments confirmed that the E-H2O2 on the RVC electrode can significantly enhance the PEC oxidation of TCP in aqueous solution. The rate of TCP degradation in such an E-H2O2-assisted TiO2 PEC reaction was 5.0 times that of the TiO2 PC reaction and 2.3 times that of the TiO2 PEC reaction. The variation of pH during the E-H2O2-assisted TiO2 PEC reaction, affected by individual reactions, was also investigated. It was found that pH was well maintained during the TCP degradation in such an E-H2O2/TiO2 reaction system. This is beneficial to TCP degradation in an aqueous solution.  相似文献   

20.
The efficacy of a produce decontamination method based on a combination of UV light (254 nm) and hydrogen peroxide (H2O2) to inactivate the MS2 F(+) coliphage inoculated onto iceberg lettuce was evaluated. Lettuce inoculated with 6.57 log PFU of MS2 was reduced by 0.5 to 1.0 log unit when illuminated with UV light alone for 20 to 60 s (12.64 to 18.96 mJ/cm2). In contrast, a 3-log reduction in MS2 was achieved with 2% (vol/vol) H2O2 spray delivered at 50 degrees C. No significant increase in log count reduction (LCR) was observed when H2O2 and UV light were applied simultaneously. However, H2O2 sprayed onto lettuce samples for 10 s, followed by a further 20-s UV illumination, resulted in an LCR of 4.12 that compares with the 1.67 obtained with 200 ppm of calcium hypochlorite wash. No further increase in MS2 inactivation was achieved by the use of either longer H2O2 spray or UV illumination times. The extent of MS2 reduction was significantly (P < 0.05) decreased when the H2O2 spray was delivered at 10 or 25 degrees C compared with 50 degrees C. In the course of aerobic storage at 4 degrees C, lettuce treated with UV light and H2O2 (10 or 25 degrees C) developed discoloration (polyphenol accumulation) within 6 days. In contrast, lettuce treated with UV light and H2O2 at 50 degrees C developed less discoloration within this time period and was comparable to untreated controls. This study demonstrated that the combination of UV light and H2O2 represents an alternative to hypochlorite-based washes to reduce the carriage of viruses on fresh produce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号