首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We develop a novel optical microcantilever for scanning near-field optical microscopy controlled by atomic force mode (SNOM/AFM). The optical microcantilever has the bent channel waveguide, the corner of which acts as aperture with a large tip angle. The resonance frequency of the optical microcantilever is 9 kHz, and the spring constant is estimated to be 0.59 N/m. The optical microcantilever can be operated in contact mode of SNOM/AFM and we obtain the optical resolution of about 200 nm, which is as same size as the diameter of aperture. We confirm that the throughput of optical microcantilever with an aperture of 170 nm diameter would be improved to be more than 10−5.  相似文献   

2.
This paper reports on the spatial distribution and polarization behaviour of the optical near-field at the aperture of a Si micromachined probe. A sub-100 nm aperture at the apex of a SiO2 tip on a Si cantilever was successfully fabricated by selective etching of the SiO2 tip in a buffered-HF solution using a thin Cr film as a mask. The aperture, 10–100 nm in size, can be reproducibly fabricated by optimizing the etching time. The optical throughput of several apertures was measured. For a 100 nm aperture, a throughput of 1% was approved. The probe shows a very high optical throughput owing to the geometrical structure of the tip. The spatial distribution of the near-field light is measured and simulated using a finite difference-time domain method. The polarization behaviour of apertures with different shapes was analysed using a photon counting camera system.  相似文献   

3.
We develop a novel optical microcantilever for scanning near-field optical microscopy controlled by atomic force mode (SNOM/AFM). The optical microcantilever has the bent channel waveguide, the corner of which acts as aperture with a large tip angle. The resonance frequency of the optical microcantilever is 9 kHz, and the spring constant is estimated to be 0.59 N/m. The optical microcantilever can be operated in contact mode of SNOM/AFM and we obtain the optical resolution of about 200 nm, which is as same size as the diameter of aperture. We confirm that the throughput of optical microcantilever with an aperture of 170 nm diameter would be improved to be more than 10(-5).  相似文献   

4.
A novel etching method for an optical fibre probe of a scanning near-field optical microscope (SNOM) was developed to fabricate a variety of tip shapes through dynamic movement during etching. By moving the fibre in two-phase fluids of HF solution and organic solvent, the taper length and angle can be varied according to the movement of the position of the meniscus on the optical fibre. This method produces both long (sharp angle) and short (wide angle) tapered tips compared to tips made with stationary etching processes. A bent-type probe for a SNOM/AFM was fabricated by applying this technique and its throughput efficiency was examined. A wide-angle probe with a 50° angle at the tip showed a throughput efficiency of 3.3 × 10−4 at a resolution of 100 nm.  相似文献   

5.
We present high-resolution aperture probes based on non-contact silicon atomic force microscopy (AFM) cantilevers for simultaneous AFM and near-infrared scanning near-field optical microscopy (SNOM). For use in near-field optical microscopy, conventional AFM cantilevers are modified by covering their tip side with an opaque aluminium layer. To fabricate an aperture, this metal layer is opened at the end of the polyhedral probe using focused ion beams (FIB). Here we show that apertures of less than 50 nm can be obtained using this technique, which actually yield a resolution of about 50 nm, corresponding to λ/20 at the wavelength used. To exclude artefacts induced by distance control, we work in constant-height mode. Our attention is particularly focused on the distance dependence of resolution and to the influence of slight cantilever bending on the optical images when scanning at such low scan heights, where first small attractive forces exerted on the cantilever become detectable.  相似文献   

6.
Plasmon-loss imaging was applied to chemical mapping during an in-situ heating experiment. The technique was applied to observation of vibration of a Si/SiO2 interface which took place during reduction of SiO2 at high temperature. The chemical maps of Si and SiO2 were recorded dynamically using a conventional TV-VTR system at a time resolution of 1/30 s.  相似文献   

7.
A technique allowing near-field photocurrent (PC) mapping of silicon surfaces in contact with an electrolyte is presented. The illumination source is an optical fibre tip with a 100-nm aperture. A shear force detection system controls the tip–sample distance while scanning the tip across the silicon–electrolyte interface. Topographic and PC images on SiO2/Si mesas both show 300 nm resolution. It is shown that this PC contrast is induced by the tip–topography interaction and hence the PC resolution is limited by the resolution of the topography. Indeed, PC mapping on topography-less patterned porous-silicon/silicon samples shows that the lateral resolution is only limited by the aperture size which is of the order of 100 nm.  相似文献   

8.
The application of a surface coating on SiC particles is studied as an alternative means of solving problems of reactivity between SiC reinforcements and molten aluminium and problems of low wetting which limit the application of casting routes for fabrication of Al–SiCp composites. The selected active barrier was a ceramic composed of SiO2, which was generated by controlled oxidation of the SiC particles. The coating behaves as an active barrier, preventing a direct reaction between molten aluminium and SiC to form Al4C3 as the main degradation product. At the same time, the SiO2 provokes other interfacial reactions, which are responsible for an improvement in wetting behaviour.
Composites were prepared by mixing and compacting SiC particles with Al powders followed by melting in a vacuum furnace, and varying the residence time. Transmission electron microscopy (TEM), high resolution electron microscopy (HREM) and field emission TEM were employed as the main characterization techniques to study the interfacial reactions occurring between the barrier and the molten aluminium. These studies showed that the SiO2 coating behaves as an active barrier which reacts with the molten Al to form a glassy phase Al–Si–O. This compound underwent partial crystallization during the composite manufacture to form mullite. The formation of an outer crystalline layer, composed mainly of Al2O3, was also detected. Participation of other secondary interface reactions inside the active barrier was also identified by HREM techniques.  相似文献   

9.
The combination of focused ion beam (FIB) sample preparation and quantitative electron spectroscopic imaging is an ideal tool for the investigation of layered structures used in microelectronic metallization schemes. In the present work, Si3N4/Cu/Si3N4/SiO2/Si and Al/TiN/Ti/SiO2/Si metallization layers produced by physical vapour deposition are investigated. We apply series of energy filtered images in the low loss region for a mapping of the sample thickness which makes it possible to refine the parameters of the FIB process. We also show how series of energy filtered images in the core loss region can be used to obtain elemental distribution images and chemical bonding information on these samples on a nanometre scale. For materials with a small grain size and/or a strong variation in Bragg orientation, the intensity distribution of the elemental map is strongly influenced by the superimposed Bragg contrast. This detrimental effect can be reduced greatly by using hollow cone illumination, as is demonstrated for polycrystalline Cu. One striking feature observed in Cu layers prepared with FIB is strong, regularly arranged contrast variations caused by subsurface defects in the Cu grains. We suppose that these defects are a consequence of a strong interaction of Ga atoms from the FIB with Cu.  相似文献   

10.
The local modification of an insulating GdBa2Cu3O6.5 thin film, made superconducting by illumination with a near-field scanning optical microscope (NSOM), is reported. A 100-nm aperture NSOM probe acts as a sub-wavelength light source of wavelength λexc = 480–650 nm, locally generating photocarriers in an otherwise insulating GdBa2–Cu3O6.5 thin film. Of the photogenerated electron–hole pairs, electrons are trapped in the crystallographic lattice, defining an electrostatic confining potential to enable the holes to move. Reflectance measurements at λ = 1.55 μm at room temperature show that photocarriers can be induced and constrained to move on a ≈200 nm scale for all investigated λexc. Photogenerated wires present a superconducting critical temperature T c = 12 K with a critical current density J c = 104 A cm−2. Exploiting the flexibility provided by photodoping through a NSOM probe, a junction was written by photodoping a wire with a narrow (≈ 50 nm) under-illuminated gap. The strong magnetic field modulation of the critical current provides a clear signature of the existence of a Josephson effect in the junction.  相似文献   

11.
Chang WS  Bauerdick S  Jeong MS 《Ultramicroscopy》2008,108(10):1070-1075
Scanning near-field optical microscopy (SNOM) achieves a resolution beyond the diffraction limit of conventional optical microscopy systems by utilizing subwavelength aperture probe scanning. A problem associated with SNOM is that the light throughput decreases markedly as the aperture diameter decreases. Apertureless scanning near-field optical microscopes obtain a much better resolution by concentrating the light field near the tip apex. However, a far-field illumination by a focused laser beam generates a large background scattering signal. Both disadvantages are overcome using the tip-on-aperture (TOA) approach, as presented in previous works. In this study, a finite difference time domain analysis of the degree of electromagnetic field enhancement is performed to verify the efficiency of TOA probes. For plasmon enhancement, silver is deposited on commercially available cantilevered SNOM tips with 20nm thicknesses. To form the aperture and TOA in the probes, electron beam-induced deposition and focused ion beam machining were applied at the end of the sharpened tip. The results show that cantilevered TOA probes were highly efficient for improvements of the resolution of optical and topological measurement of nanostructures.  相似文献   

12.
We have developed a high-speed scanning near-field optical microscope (SNOM)/atomic force microscope (AFM) system including dual feedback controllers. The system includes an additional piezoelectric actuator with fast response in the z direction and a correction circuit to eliminate unnecessary components from the feedback signal. From the measurement of a patterned chromium layer of 2 × 2 μm2 checks on a quartz glass plate, we confirmed that our system had more effective feedback control and faster scanning than current SNOM/AFM systems that use only a piezo-tube. The scanning speed of the present system was estimated to be about five times faster than that of current SNOM/AFM systems.  相似文献   

13.
Formation processes of β-FeSi2 from amorphous Fe-Si layers have been investigated using transmission electron microscopy (TEM). Si(111) substrates were irradiated with 120 keV Fe ions at −150°C to fluences of 1.0 × 1017 and 4.0 × 1017 cm–2. An amorphous Fe-Si layer embedded in an amorphous Si was formed in the low-fluence sample, whereas an amorphous Fe-Si surface layer on an amorphous Si was obtained in the high-fluence one. The amorphous Fe-Si layers were crystallized to β-FeSi2 after thermal annealing at 800°C for 2 h. Cross-sectional and plan-view TEM observations revealed that, prior to the formation of β-FeSi2, the amorphous Fe-Si layers crystallized to α-FeSi2 in the low-fluence sample and to ɛ-FeSi in the high-fluence one. The absence of metastable γ-FeSi2 which is considered as a precursor of epitaxially grown β-FeSi2 on Si was attributed to the instability of γ-phase in an amorphous matrix.  相似文献   

14.
We studied a nanometre-sized optical probe in a scanning near-field optical microscope. The probe profile is determined by using a knife-edge method and a modulated transfer function evaluation method which uses nanometre-sized line-and-space tungsten patterns (with spaces 1 μm to 50 nm apart) on SiO2 substrates. The aluminium-covered, pipette-pulled fibre probe used here has two optical probes: one with a large diameter (350 nm) and the other with a small diameter (10 nm). The small-diameter probe has an optical intensity ≈63 times larger than that of the large-diameter probe, but the power is about 1/25 of that of the large probe.  相似文献   

15.
The inexpensive fabrication of high-quality probes for near-field optical applications is still unsolved although several methods for integrated fabrication have been proposed in the past. A further drawback is the intensity loss of the transmitted light in the 'cut-off' region near the aperture in tapered optical fibres typically used as near-field probes. As a remedy for these limitations we suggest here a new wafer-scale semibatch microfabrication process for transparent photoplastic probes. The process starts with the fabrication of a pyramidal mould in silicon by using the anisotropic etchant potassium hydroxide. This results in an inverted pyramid limited by < 111 > silicon crystal planes having an angle of ∼ 54°. The surface including the mould is covered by a ∼ 1.5 nm thick organic monolayer of dodecyltrichlorosilane (DTS) and a 100-nm thick evaporated aluminium film. Two layers of photoplastic material are then spin-coated (thereby conformal filling the mould) and structured by lithography to form a cup for the optical fibre microassembly. The photoplastic probes are finally lifted off mechanically from the mould with the aluminium coating. Focused ion beam milling has been used to subsequently form apertures with diameters in the order of 80 nm. The advantage of our method is that the light to the aperture area can be directly coupled into the probe by using existing fibre-based NSOM set-ups, without the need for far-field alignment, which is typically necessary for cantilevered probes. We have evidence that the aluminium layer is considerably smoother compared to the 'grainy' layers typically evaporated on free-standing probes. The optical throughput efficiency was measured to be about 10−4. This new NSOM probe was directly bonded to a tuning fork sensor for the shear force control and the topography of a polymer sample was successfully obtained.  相似文献   

16.
Near-field scanning optical microscopy and atomic force microscopy are used to probe the sub-micrometre phase structure in palmitic acid monolayers containing the 25 peptide amino terminus of lung surfactant protein B (SP-B1−25). Monolayers deposited onto mica substrates at a surface pressure of 15 mN m−1 exhibit a two-phase coexistence across a broad range of SP-B1−25 concentrations. Monolayers containing 5 wt.% SP-B1−25 or less exhibit an expanse of liquid condensed phase in which elliptical liquid expanded (LE) domains with areas of approximately 25 µm2 coexist. By contrast, monolayers containing 20 wt.% SP-B1−25 exhibit an expanse of liquid expanded phase in which circular liquid condensed domains coexist. The phase distribution dependence on SP-B1−25 concentration suggests that the peptide induces disorder in the monolayer.  相似文献   

17.
The newly developed inverted tapping-mode tuning-fork near-field scanning optical microscopy (TMTF-NSOM) is used to study the local near-field optical properties of strained AlGaInP/Ga0.4In0.6P low power visible multiquantum-well laser diodes. In contrast to shear-force mode NSOM, TMTF-NSOM provides the function to acquire the evanescent wave intensity ratio | I (2ω)|/| I (ω)| image, from which the evanescent wave decay coefficient q can be evaluated for a known tapping amplitude. Moreover, we probe the near-field stimulated emission spectrum, which gives the free-space laser light wavelength λo and the index of refraction n r of the laser diode resonant cavity. Once q , λo, and n r are all measured, we can determine the angle of incidence θo of the dominant totally internally reflected waves incident on the front mirror facet of the resonator. Determination of such an angle is very important in modelling the stability of the laser diode resonator.  相似文献   

18.
A detailed accuracy analysis of electron backscatter diffraction (EBSD) elastic strain measurement has been carried out using both simulated and experimental patterns. Strains are determined by measuring shifts between two EBSD patterns (one being the reference) over regions of interest (ROI) using an iterative cross-correlation algorithm. An original minimization procedure over 20 regions of interests gives a unique solution for the eight independent components of the deviatoric displacement gradient tensor. It is shown that this method leads to strain measurements on simulated patterns with an accuracy better than 10−4. The influence of the projection parameters is also investigated. The accuracy assessment is illustrated by two worked examples: (i) four-point bending of a silicon single crystal and (ii) Si1 – x Ge x layers on a Si substrate. Experimental results are compared with finite-element simulations.  相似文献   

19.
Chiang  Wang  & Lee 《Journal of microscopy》1998,191(3):275-285
Grain boundaries in model ZnO–Bi2O3 and ZnO–Bi2O3–CoO varistors and a commercial multicomponent varistor have been characterized by high-resolution electron microscopy (HREM) and scanning transmission electron microscopy (STEM), in order to determine the relationship between Bi grain boundary segregation and formation of thin intergranular films. By controlling Bi2O3 content, applied pressure and temperature, the grain boundary Bi excess has been systematically varied from nearly zero to ΓBi = 1 × 1015 cm−2 (≈ 1 monolayer), as measured by HB 603 STEM using an area-scan method. HREM shows that intergranular amorphous films are clearly distinguishable in samples with ΓBi > 8 × 1014 cm−2. These films range in thickness, depending on the Bi excess, from 0.6 to 1.5 nm. Similar films of ≈ 1 nm thickness are widely observed in the commercial varistor. The composition of the films is a ZnO–Bi2O3 solid solution, which is in all cases more enriched in ZnO than the bulk eutectic liquid. The Bi-doped grain boundaries in ZnO varistors therefore contain an intergranular amorphous film which has not only an equilibrium thickness, but also a distinct equilibrium composition.  相似文献   

20.
A near-field scanning optical microscope has been combined with a two-colour time-resolved pump-probe measurement system. It has a noise-equivalent transmittance change of 5.0 × 10−5 for a probe pulse with an intensity of 30 nW. The system has been used for evaluating molecular thin films that have a domain structure, particularly for observing a gate action of the single domains. The results include key features to understand an origin of the domains and suggest that the film composition is uniform over a distance of several micrometres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号