首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Herein, we present a straightforward bottom-up synthesis of a high electron mobility and highly light scattering macroporous photoanode for dye-sensitized solar cells. The dense three-dimensional Al/ZnO, SnO(2), or TiO(2) host integrates a conformal passivation thin film to reduce recombination and a large surface-area mesoporous anatase guest for high dye loading. This novel photoanode is designed to improve the charge extraction resulting in higher fill factor and photovoltage for DSCs. An increase in photovoltage of up to 110 mV over state-of-the-art DSC is demonstrated.  相似文献   

2.
3.
For efficient charge injection and transportation, wide bandgap nanostructured metal oxide semiconductors with dye adsorption surface and higher electron mobility are essential properties for photoanode in dye-sensitized solar cells (DSSCs). TiO2-based DSSCs are well established and so far have demonstrated maximum power conversion efficiency when sensitized with ruthenium-based dyes. Quest for new materials and/or methods is continuous process in scientific investigation, for getting desired comparative results. The conduction band (CB) position of CeO2 photoanode lies below lowest unoccupied molecular orbital level (LUMO) of rose bengal (RB) dye. Due to this, faster electron transfer from LUMO level of RB dye to CB of CeO2 is facilitated. Recombination rate of electrons is less in CeO2 photoanode than that of TiO2 photoanode. Hence, the lifetime of electrons is more in CeO2 photoanode. Therefore, we have replaced TiO2 by ceria (CeO2) and expensive ruthenium-based dye by a low cost RB dye. In this study, we have synthesized CeO2 nanoparticles. X-ray diffraction (XRD) analysis confirms the formation of CeO2 with particle size ~7 nm by Scherrer formula. The bandgap of 2.93 eV is calculated using UV–visible absorption data. The scanning electron microscopy (SEM) images show formation of porous structure of photoanode, which is useful for dye adsorption. The energy dispersive spectroscopy is in confirmation with XRD results, confirming the presence of Ce and O in the ratio of 1:2. UV–visible absorption under diffused reflectance spectra of dye-loaded photoanode confirms the successful dye loading. UV–visible transmission spectrum of CeO2 photoanode confirms the transparency of photoanode in visible region. The electrochemical impedance spectroscopy analysis confirms less recombination rate and more electron lifetime in RB-sensitized CeO2 than TiO2 photoanode. We found that CeO2 also showed with considerable difference between dark and light DSSCs performance, when loaded with RB dye. The working mechanism of solar cells with fluorine-doped tin oxide (FTO)/CeO2/RB dye/carbon-coated FTO is discussed. These solar cells show V OC ~360 mV, J SC ~0.25 mA cm ?2 and fill factor ~63% with efficiency of 0.23%. These results are better as compared to costly ruthenium dye-sensitized CeO2 photoanode.  相似文献   

4.
Journal of Materials Science: Materials in Electronics - Pure and tin-incorporated TiO2 (Sn-TiO2) nanoparticles were prepared utilizing photolysis method. Field emission-scanning electron...  相似文献   

5.
Electrospinning process was used to fabricate hybrid TiO2 nanofibrous membrane containing multi-walled carbon nanotubes (MWCNTs). The MWCNTs treated with plasma modification as established in our previous studies are dispersed in the mixture of titanium (IV) isopropoxide and poly(methyl methacrylate) in N,N-dimethylformamide prior to electrospinning. Diameter of the calcined TiO2-MWCNTs nanofibers (NFs) ranged from 100 to 200 nm, and transmission electron microscopy shows that the MWCNTs are both embedded and lying externally on the NFs. Photoanodes for dye-sensitized solar cells are prepared by first conglutinating the nanofibrous membranes onto conducting glass substrate under methanol vapor treatment followed by calcination and dye sensitization. The NFs exhibit improved conducting behavior (from 10?8 to 10?6 S/m) with small quantity (0.5–1.5 wt%) of MWCNTs. An optimum addition of 1.0 wt% MWCNTs into the TiO2 nanofibrous membrane improves the overall solar conversion efficiency by 47 % with significant increase in the short-circuit photocurrent. Electrochemical impedance spectroscopy and intensity-modulated photocurrent/photovoltage spectroscopy analyses reveal that the enhanced electron transport with smaller resistance is responsible for the improved cell performance. The results suggest that the conducting properties of the MWCNTs are crucial for faster transport of photogenerated electrons, hence retarding charge recombination that could result in poor conversion efficiency.  相似文献   

6.
崔旭梅  左承阳  蓝德均  王军  黄载春 《功能材料》2012,43(11):1386-1388
采用丝网印刷的方式制备了染料敏化太阳能电池的TiO2薄膜光阳极、TiO2-ZnO复合薄膜光阳极以及TiO2/ZnO双层薄膜光阳极,研究了ZnO对TiO2薄膜光阳极的调制改性作用。研究结果表明分别以醋酸锌和ZnO直接掺杂制备的TiO2-ZnO复合薄膜光阳极同未掺杂的TiO2薄膜光阳极相比,以醋酸锌为原料制备的复合薄膜光阳极使电池转换效率提高了1倍,而由于微米量级的ZnO的粒径大,用其作原料制得的复合薄膜光阳极反而使电池的转换效率有所降低。以醋酸锌为原料制备的TiO2/ZnO双层薄膜光阳极同TiO2薄膜光阳极相比,电池转换效率提高了13倍,通过性能优化后电池的转换效率达到4.7%。  相似文献   

7.
CdSe and CdTe are composite semiconductor materials used in hybrid solar cell due to their high absorption coefficients. CdSe and CdTe have different band gaps, 1.74 eV and 1.45 eV respectively and then they can absorb solar energy in a wider range of wavelength compare to the silicon solar cell. In this research, CdSe and CdTe nanorods were fabricated using electrochemical deposition in an anodic aluminum oxide template. The electrodeposition behaviors of CdSe and CdTe were investigated using cyclic voltammetric technique. The deposition potentials of CdSe and CdTe were obtained through cyclic voltammetric technique. The effects of Te and Se ion concentration in the electrolyte on the composition of the deposits were investigated to obtain 1:1 atomic ratio. Structures of layered CdSe/CdTe nanorods were analyzed with FESEM and EDS.  相似文献   

8.
This study fabricates dye-sensitized solar cells (DSSCs) based on TiO(2)/multi-walled carbon nanotube (MWCNT) nanocomposite photoanodes obtained by the modified acid-catalyzed sol-gel procedure. Results show that incorporating MWCNTs into a TiO(2)-based electrode efficiently improves the physicochemical properties of the solar cell. The results of dye adsorption and cell performance measurements indicate that introducing MWCNTs would improve the roughness factor (from?834 to?1267) of the electrode and the charge recombination of electron/hole (e(-)/h(+)) pairs. These significant changes could lead to higher adsorbed dye quantities, photocurrent and DSSC cell performance. Nevertheless, a higher loading of MWCNTs causes light-harvesting competition that affects the light adsorption of the dye-sensitizer, and consequently reduces the cell efficiency. This study suggests an optimum MWCNT loading in the electrode of 0.3?wt%, and proposes a sol-gel synthesis procedure as a promising method of preparing the TiO(2)-based nanocomposite.  相似文献   

9.
Iron-enriched industrial waste cinder (CFe*) has been recycled for efficient and stable anchoring of Ru(CN)6(4-) to the formation of a hybrid ruthenium purple complex. The cinder/ruthenium purple hybrid-modified carbon paste electrode (designated as CPE/CFe*-RP) was worked out for hydrodynamic analysis of H2O2 at a low detecting potential of 0.0 V versus Ag/AgCl in pH 7 ammonium buffer solution. The highly active, selective, and stable electrocatalytic system with a function similar to peroxidase enzyme shows a linear calibration curve up to 0.8 mM H2O2 at a rotation rate of 3600 rpm with slope and detection limit (S/N = 3) of 0.11 microA/microM and 33 nM, respectively. Interference by direct electrochemical oxidation of easily oxidizable substances can be prevented as a result of the low detecting potential of the working system. A glucose biosensor was further constructed by coating with glucose oxidase and Tosflex on the CPE/CFe*-RP (denoted as CPE/CFe*-RP/GOx/Ts). The proposed CPE/CFe*-RP/GOx/Ts with a two-layer configuration, that is, enzyme and protecting layers, exhibits good operational performance in terms of response time, linearity, detection limit, and lifetime.  相似文献   

10.
ZnO is a promising candidate as low cost, porous semiconductor material for photoanodes in a dye sensitized solar cell. In this work, we investigate the performance of pure ZnO nanoparticles (ZNPs), Al2O3 doped ZnO (Al@ZNPs) and ZnO/Nb2O5 core–shell structure of photoanode material. These electrodes were sensitized with a pervoskite CH3NH3SnCl3 sensitizer. To study the effect of the Al2O3, Nb2O5 treatment with ZnO, the J–V and EIS parameters, the current density (Jsc),Open circuit voltage (Voc), fill factor (FF), electron life time (τn), electron mobility (µ) and charge collection efficiency (?cc) are calculated for the fabricated solar cells and the results are compared. It was found that the Al2O3 doped ZnO with the sensitizer CH3NH3Sncl2 showed the highest efficiency of 9.41% under 100 mW/cm2 irradiation. The electron impedance spectroscopy revealed that the charge collection efficiency (?cc) of the solar cells is in the order of PSSC3?>?PSSC4?>?PSSC2?>?PSSC1. In this work, the effect of blocking layer (Ta2O5) is also discussed. From the J–V and EIS analysis, the effect of blocking layer is appreciable and it is useful to increase the efficiency of the solar cell by the way of reducing the recombination of charge carriers process. Therefore, the increase of photocurrent is mainly due to the combined effect of the sensitizer competence and blocking layer.  相似文献   

11.
12.
Previously we reported the synthesis of novel organic-inorganic composite indium tin oxide (ITO) foam precursor leading to the formation of “sponge-like” ITO by burning away the organics. This newly made sponge-like ITO possesses relatively high electrical conductivity due to phonon confinement with reasonable pore structure and may have potential application as functional materials in semiconducting dye absorbing layer in dye-sensitized solar cell (DSSC) and also as the receptor of electrons injected from the quantum dots (QDs) of organic--inorganic hybrid QD based solar cell. This report is a short review of “sponge-like” ITO described as a lecture note on its future use as an alternative new prospective material for photoanode of solar cell in the domain of sustainable energy.  相似文献   

13.
14.
15.
This study reports the use of single-crystalline and well-aligned ZnO nanowires as photoanode material for dye-sensitized solar cells. The ZnO nanowires are grown on fluorine-doped tin oxide coated glass substrates without catalysts by thermal evaporation. In spite of low roughness factors of around 25 for the nanowire photoanodes, the fabricated solar cells yield power conversion efficiencies of around 1.3% under AM 1.5G (100 mW cm-2) illumination. Moreover, fill factors of around 0.5 have been achieved and are relatively high when compared with reported values from ZnO nanowire photoanodes. The results reveal the advantage of using single-crystalline nanowires as photoanode material and provide clues for the advancement of nanowire based dye-sensitized solar cells.  相似文献   

16.
Dye-sensitized nanocrystalline solar cells (DSC) have received considerable attention as a cost-effective alternative to conventional solar cells. One of the main factors that has hampered widespread practical use of DSC is the poor thermostability encountered so far with these devices. Here we show a DSC with unprecedented stable performance under both thermal stress and soaking with light, matching the durability criteria applied to silicon solar cells for outdoor applications. The cell uses the amphiphilic ruthenium sensitizer cis-RuLL'(SCN)(2) (L = 4,4'-dicarboxylic acid-2,2'-bipyridine, L' = 4,4'-dinonyl-2,2'-bipyridine) in conjunction with a quasi-solid-state polymer gel electrolyte, reaching an efficiency of >6% in full sunlight (air mass 1.5, 100 mW cm(-2)). A convenient and versatile new route is reported for the synthesis of the heteroleptic ruthenium complex, which plays a key role in achieving the high-temperature stability. Ultramicroelectrode voltammetric measurements show that the triiodide/iodide couple can perform charge transport freely in the polymer gel. The cell sustained heating for 1,000 h at 80 degrees C, maintaining 94% of its initial performance. The device also showed excellent stability under light soaking at 55 degrees C for 1,000 h in a solar simulator (100 mW cm(-2)) equipped with a ultraviolet filter. The present findings should foster widespread practical application of dye-sensitized solar cells.  相似文献   

17.
JY Lek  YM Lam  J Niziol  M Marzec 《Nanotechnology》2012,23(31):315401
We report for the first time the fabrication and characterization of organic-inorganic bulk heterojunction (BHJ) hybrid solar cells made of poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) and pyridine-capped CdSe nanorods. By optimizing both CdSe loading and active layer film thickness, the power conversion efficiencies (PCEs) of PCDTBT:CdSe hybrid solar cells were able to reach 2%, with PCDTBT:CdSe devices displaying an open-circuit voltage (V(OC )) that is 35% higher than P3HT:CdSe devices due to the deeper HOMO level of PCDTBT polymer. The performance of PCDTBT:CdSe devices is limited by its morphology and also its lower LUMO energy offset compared to P3HT:CdSe devices. Hence, the performance of PCDTBT:CdSe solar cells could be further improved by modifying the morphology of the films and also by including an interlayer to generate a built-in voltage to encourage exciton dissociation. Our results suggest that PCDTBT could be a viable alternative to P3HT as an electron donor in hybrid BHJ solar cells for high photovoltage application.  相似文献   

18.
赵旺  魏爱香  刘俊  葛增娴  刘传标 《功能材料》2011,42(Z3):431-434
首先采用水热合成技术制备TiO2纳米线粉末,然后采用溶胶-凝胶技术制备钛酸丁酯溶胶,向溶胶中加入适量的TiO2纳米线制备凝胶浆体,采用浸渍提拉法在透明导电玻璃上制备TiO2纳米颗粒/TiO2纳米线复合薄膜的光阳极.通过XRD、SEM,电池的I-V特性和电化学阻抗谱测试,研究TiO2纳米线的添加量对光阳极的结构、形貌和电...  相似文献   

19.
The optoelectronic properties of P3HT–CdSe nanocomposites prepared by insitu chemical oxidative polymerization were studied. CdSe QDs were synthesized by hot injection method using tri octyl phosphine oxide (TOPO) as capping ligand whereas the P3HT polymer was prepared by chemical oxidative polymerization. FTIR studies confirmed the regioregularity of the P3HT and revealed the chemical interaction of P3HT and CdSe in nanocomposite. Absorption studies showed blue shift for the nanocomposites as compare to pristine P3HT, the electron transfer from conducting polymer to the CdSe was detected by the measurements of quenching of photoluminescence from conducting polymer after the addition of semiconductor nano crystals which confirmed that an optimum amount of nanoparticles provide networking in hybrid composites. The optimal result for device prepared by P3HT–CdSe nanocomposites was open circuit voltage (Voc) 0.5, short circuit current density (Jsc) 0.66, Fill factor (FF) 0.6855 and efficiency (η) 0.22%.  相似文献   

20.
Lee TH  Sue HJ  Cheng X 《Nanotechnology》2011,22(28):285401
Hybrid solar cells based on poly(3-hexylthiophene) (P3HT) and ZnO nanoparticle bulk heterojunctions (BHJ) combined with ZnO nanorod arrays were fabricated and analyzed. The dispersion of ZnO nanoparticles in P3HT is assisted by dye molecules, which function as a surface modifier for ZnO nanoparticles to improve compatibility between ZnO nanoparticles and P3HT. Compared to the ZnO nanorod/P3HT devices, the optimized cells with the ZnO nanoparticles dispersed in P3HT can significantly increase the short-circuit current and the overall power conversion efficiency from 1.36 mA cm(-2) to 2.51 mA cm(-2) and from 0.18% to 0.45% with 625 nm long ZnO nanorod arrays, respectively. The novel scheme of using the light-absorbing dye molecules both as light absorber and as surfactant for ZnO nanoparticles presents a facile route towards forming bulk heterojunction hybrid solar cells based on semiconducting nanomaterials and conjugated polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号