首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Crystal structure and evolving SAR considerations of potent, selective benzylsulfonamide lactam thrombin inhibitors and related serine protease inhibitors have led to the design of novel thrombin inhibitors 1a-g, featuring hydrophobic, basic, P4-alkylaminolactam scaffolds that serve as novel types of P3-P4 dipeptide mimics. The design, synthesis, and biological activity of these targets is presented.  相似文献   

2.
We have shown previously that ADP released upon platelet adhesion mediated by alphaIIb beta3 integrin triggers accumulation of phosphatidylinositol 3',4'-bisphosphate (PtdIns-3,4-P2) (Gironcel, D. , Racaud-Sultan, C., Payrastre, B., Haricot, M., Borchert, G., Kieffer, N., Breton, M., and Chap, H. (1996) FEBS Lett. 389, 253-256). ADP has also been involved in platelet spreading. Therefore, in order to study a possible role of phosphoinositide 3-kinase in platelet morphological changes following adhesion, human platelets were pretreated with specific phosphoinositide 3-kinase inhibitors LY294002 and wortmannin. Under conditions where PtdIns-3, 4-P2 synthesis was totally inhibited (25 microM LY294002 or 100 nM wortmannin), platelets adhered to the fibrinogen matrix, extended pseudopodia, but did not spread. Moreover, addition of ADP to the medium did not reverse the inhibitory effects of phosphoinositide 3-kinase inhibitors on platelet spreading. Although synthetic dipalmitoyl PtdIns-3,4-P2 and dipalmitoyl phosphatidylinositol 3',4', 5'-trisphosphate restored only partially platelet spreading, phosphatidylinositol 4',5'-bisphosphate (PtdIns-4,5-P2) was able to trigger full spreading of wortmannin-treated adherent platelets. Following 32P labeling of intact platelets, the recovery of [32P]PtdIns-4,5-P2 in anti-talin immunoprecipitates from adherent platelets was found to be decreased upon treatment by wortmannin. These results suggest that the lipid products of phosphoinositide 3-kinase are required but not sufficient for ADP-induced spreading of adherent platelets and that PtdIns-4,5-P2 could be a downstream messenger of this signaling pathway.  相似文献   

3.
Inositol phospholipids regulate a variety of cellular processes including proliferation, survival, vesicular trafficking, and cytoskeletal organization. Recently, two novel phosphoinositides, phosphatidylinositol-3,5-bisphosphate (PtdIns-3,5-P2) and phosphatidylinositol- 5-phosphate (PtdIns-5-P), have been shown to exist in cells. PtdIns-3,5-P2, which is regulated by osmotic stress, appears to be synthesized by phosphorylation of PtdIns-3-P at the D-5 position. No evidence yet exists for how PtdIns-5-P is produced in cells. Understanding the regulation of synthesis of these molecules will be important for identifying their function in cellular signaling. To determine the pathway by which PtdIns-3,5-P2 and Ptd-Ins-5-P might be synthesized, we tested the ability of the recently cloned type I PtdIns-4-P 5-kinases (PIP5Ks) alpha and beta to phosphorylate PtdIns-3-P and PtdIns at the D-5 position of the inositol ring. We found that the type I PIP5Ks phosphorylate PtdIns-3-P to form PtdIns-3,5-P2. The identity of the PtdIns-3,5-P2 product was determined by anion exchange high performance liquid chromatography analysis and periodate treatment. PtdIns-3,4-P2 and PtdIns-3,4,5-P3 were also produced from PtdIns-3-P phosphorylation by both isoforms. When expressed in mammalian cells, PIP5K Ialpha and PIP5K Ibeta differed in their ability to synthesize PtdIns-3,5-P2 relative to PtdIns-3,4-P2. We also found that the type I PIP5Ks phosphorylate PtdIns to produce PtdIns-5-P and phosphorylate PtdIns-3,4-P2 to produce PtdIns-3,4,5-P3. Our findings suggest that type I PIP5Ks synthesize the novel phospholipids PtdIns-3,5-P2 and PtdIns-5-P. The ability of PIP5Ks to produce multiple signaling molecules indicates that they may participate in a variety of cellular processes.  相似文献   

4.
A systematic study of interleukin-1 beta converting enzyme (ICE, caspase-1) and caspase-3 (CPP32, apopain) inhibitors incorporating a P2-P3 conformationally constrained dipeptide mimetic is reported. Depending on the nature of the P4 substituent, highly selective inhibitors of both Csp-1 or Csp-3 were obtained.  相似文献   

5.
A series of novel unsymmetrical anthranilamide-containing HIV protease inhibitors was designed. The structure-activity studies revealed a series of potent P2-P3' inhibitors that incorporate an anthranilamide group at the P2' position. A reduction in molecular weight and lipophilicity is achieved by a judicious choice of P2 ligands (i.e., aromatic, heteroaromatic, carbamate, and peptidic). A systematic investigation led to the 5-thiazolyl carbamate analog 8 m, which exhibited a favorable Cmax/EC50 ratio (> 30), plasma half-life (> 8 h), and potent in vitro antiviral activity (EC50 = 0.2 microM).  相似文献   

6.
A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate   总被引:1,自引:0,他引:1  
Phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2), a key molecule in the phosphoinositide signalling pathway, was thought to be synthesized exclusively by phosphorylation of PtdIns-4-P at the D-5 position of the inositol ring. The enzymes that produce PtdIns-4,5-P2 in vitro fall into two related subfamilies (type I and type II PtdInsP-5-OH kinases, or PIP(5)Ks) based on their enzymatic properties and sequence similarities'. Here we have reinvestigated the substrate specificities of these enzymes. As expected, the type I enzyme phosphorylates PtdIns-4-P at the D-5 position of the inositol ring. Surprisingly, the type II enzyme, which is abundant in some tissues, phosphorylates PtdIns-5-P at the D-4 position, and thus should be considered as a 4-OH kinase, or PIP(4)K. The earlier error in characterizing the activity of the type II enzyme is due to the presence of contaminating PtdIns-5-P in commercial preparations of PtdIns-4-P. Although PtdIns-5-P was previously thought not to exist in vivo, we find evidence for the presence of this lipid in mammalian fibroblasts, establishing a new pathway for PtdIns-4,5-P2 synthesis.  相似文献   

7.
Tyrosine kinase receptors lead to rapid activation of phosphatidylinositol 3-kinase (PI3 kinase) and the subsequent formation of phosphatidylinositides (PtdIns) 3,4-P2 and PtdIns 3,4, 5-P3, which are thought to be involved in signaling for glucose transporter GLUT4 translocation, cytoskeletal rearrangement, and DNA synthesis. However, the specific role of each of these PtdIns in insulin and growth factor signaling is still mainly unknown. Therefore, we assessed, in the current study, the effect of SH2-containing inositol phosphatase (SHIP) expression on these biological effects. SHIP is a 5' phosphatase that decreases the intracellular levels of PtdIns 3,4,5-P3. Expression of SHIP after nuclear microinjection in 3T3-L1 adipocytes inhibited insulin-induced GLUT4 translocation by 100 +/- 21% (mean +/- the standard error) at submaximal (3 ng/ml) and 64 +/- 5% at maximal (10 ng/ml) insulin concentrations (P < 0.05 and P < 0.001, respectively). A catalytically inactive mutant of SHIP had no effect on insulin-induced GLUT4 translocation. Furthermore, SHIP also abolished GLUT4 translocation induced by a membrane-targeted catalytic subunit of PI3 kinase. In addition, insulin-, insulin-like growth factor I (IGF-I)-, and platelet-derived growth factor-induced cytoskeletal rearrangement, i.e., membrane ruffling, was significantly inhibited (78 +/- 10, 64 +/- 3, and 62 +/- 5%, respectively; P < 0.05 for all) in 3T3-L1 adipocytes. In a rat fibroblast cell line overexpressing the human insulin receptor (HIRc-B), SHIP inhibited membrane ruffling induced by insulin and IGF-I by 76 +/- 3% (P < 0.001) and 68 +/- 5% (P < 0.005), respectively. However, growth factor-induced stress fiber breakdown was not affected by SHIP expression. Finally, SHIP decreased significantly growth factor-induced mitogen-activated protein kinase activation and DNA synthesis. Expression of the catalytically inactive mutant had no effect on these cellular responses. In summary, our results show that expression of SHIP inhibits insulin-induced GLUT4 translocation, growth factor-induced membrane ruffling, and DNA synthesis, indicating that PtdIns 3,4,5-P3 is the key phospholipid product mediating these biological actions.  相似文献   

8.
The crystal structures of three highly potent and selective low-molecular weight rigid peptidyl aldehyde inhibitors complexed with thrombin have been determined and refined to R values 0.152-0. 170 at 1.8-2.1 A resolution. Since the selectivity of two of the inhibitors was >1600 with respect to trypsin, the structures of trypsin-inhibited complexes of these inhibitors were also determined (R = 0.142-0.157 at 1.9-2.1 A resolution). The selectivity appears to reside in the inability of a benzenesulfonamide group to bind at the equivalent of the D-enantiomorphic S3 site of thrombin, which may be related to the lack of a 60-insertion loop in trypsin. All the inhibitors have a novel lactam moiety at the P3 position, while the two with greatest trypsin selectivity have a guanidinopiperidyl group at the P1 position that binds in the S1 specificity site. Differences in the binding constants of these inhibitors are correlated with their interactions with thrombin and trypsin. The kinetics of inhibition vary from slow to fast with thrombin and are fast in all cases with trypsin. The kinetics are examined in terms of the slow formation of a stable transition-state complex in a two-step mechanism. The structures of both thrombin and trypsin complexes show similar well-defined transition states in the S1 site and at the electrophilic carbon atom and Ser195OG. The trypsin structures, however, suggest that the first step in a two-step kinetic mechanism may involve formation of a weak transition-state complex, rather than binding dominated by the P2-P4 positions.  相似文献   

9.
Caveolae are small, plasma membrane invaginations that have been implicated in cell signaling. In A431 cells, approximately half of the total cellular phosphatidylinositol 4,5-bisphosphate (PtdIns 4, 5-P2) was found to be localized in low density, Triton-insoluble membrane domains enriched in caveolin. Treatment of cells with either epidermal growth factor or bradykinin for 5 min at 37 degrees C resulted in approximately a 50% decrease in this caveolar PtdIns 4,5-P2 with no change in the levels of plasma membrane PtdIns 4,5-P2. These data suggest that the PtdIns 4,5-P2 present in cells is largely compartmentalized and that the caveolar PtdIns 4,5-P2 is subject to hydrolysis by hormone-stimulated phospholipase C. As growth factor receptors, seven transmembrane domain receptors, heterotrimeric G proteins, and the inositol trisphosphate receptor have all been shown to be enriched in caveolae, these findings suggest that both the generation and response to inositol trisphosphate is highly compartmentalized within the cell.  相似文献   

10.
Canonical loops of protein inhibitors of serine proteinases occur in proteins having completely different folds. In this article, conformations of the loops have been analyzed for inhibitors belonging to 10 structurally different families. Using deviation in Calpha-Calpha distances as a criterion for loop similarity, we found that the P3-P3' segment defines most properly the length of the loop. When conformational differences among loops of individual inhibitors were compared using root mean square deviation (rmsd) in atomic coordinates for all main chain atoms (deltar method) and rmsd operating in main chain torsion angles (deltat method), differences of up to 2.1 A and 72.3 degrees, respectively, were observed. Such large values indicate significant conformational differences among individual loops. Nevertheless, the overall geometry of the inhibitor-proteinase interaction is very well preserved, as judged from the similarity of Calpha-Calpha distances between Calpha of catalytic Ser and Calpha of P3-P3' residues in various enzyme-inhibitor complexes. The mode of interaction is very well preserved both in the chymotrypsin and subtilisin families, as distances calculated for subtilisin-inhibitor complexes are almost always within the range of those for chymotrypsin-inhibitor complexes. Complex formation leads to conformational changes of up to 160 degrees for chi1 angle. Side chains of residue P1 and P2' adopt in different complexes a similar orientation (chi1 angle = -60 degrees and -180 degrees, respectively). To check whether the canonical conformation can be found among non-proteinase-inhibitor Brookhaven Protein Data Bank structures, two selection criteria--the allowed main chain dihedral angles and Calpha-Calpha distances for the P3-P3' segment--were applied to all these structures. This procedure detected 132 unique hexapeptide segments in 121 structurally and functionally unrelated proteins. Partial preferences for certain amino acids occurring at particular positions in these hexapeptides could be noted. Further restriction of this set to hexapeptides with a highly exposed P1 residue side chain resulted in 40 segments. The possibility of complexes formation between these segments and serine proteinases was ruled out in molecular modeling due to steric clashes. Several structural features that determine the canonical conformation of the loop both in inhibitors and in other proteins can be distinguished. They include main chain hydrogen bonds both within the P3-P3' segment and with the scaffold region, P3-P4 and P3'-P4' hydrophobic interactions, and finally either hydrophobic or polar interactions involving the P1' residue.  相似文献   

11.
Endothelin-1 is the most potent peptidic vasoconstrictor discovered to date. The final step of posttranslational processing of this peptide is the conversion of its precursor by endothelin-converting enzyme-1 (ECE-1), a metalloprotease which displays high amino acid sequence identity with neutral endopeptidase 24.11 (NEP) especially at the catalytic center. A series of potent and selective arylacetylene-containing ECE-1 inhibitors have been prepared. (S, S)-3-Cyclohexyl-2-[[5-(2, 4-difluorophenyl)-2-[(phosphonomethyl)amino]pent-4-ynoyl]amino] propio nic acid (47), an arylacetylene amino phosphonate dipeptide, was found to inhibit ECE-1 and NEP with IC50 values of 14 nM and 2 microM, respectively. Similarly, (S)-[[1-[(2-biphenyl-4-ylethyl)carbamoyl]-4-(2-fluorophenyl)but-3- yny l]amino]methyl]phosphonic acid (56), an arylacetylene amino phosphonate amide, had IC50's of 33 nM and 6.5 microM for ECE-1 and NEP, respectively. Slight modification of the aryl moiety was found to have dramatic effects on ECE-1/NEP selectivity. The 2-fluoro dipeptide analogue, (S, S)-2-[[5-(2-fluorophenyl)-2-[(phosphonomethyl)amino]pent-4-ynoyl]+ ++amin o]-4-methylpentanoic acid (40), showed a 72-fold selectivity for ECE-1 over NEP, while the 3-fluoro dipeptide analogue, (S, S)-2-[[5-(3-fluorophenyl)-2-[(phosphonomethyl)amino]pent-4-ynoyl]+ ++amin o]-4-methylpentanoic acid (22), was equipotent for ECE-1 and NEP. Several of these inhibitors were shown to be potent in blocking ET-1 production in vivo as demonstrated by the big ET-1-induced pressor response in rats. These potent inhibitors are the most selective for ECE-1 reported to date and are envisaged to have a variety of therapeutic applications.  相似文献   

12.
Potent serine protease inhibitor 1a featuring a hybrid P3-P4 quaternary lactam dipeptide surrogate was prepared based upon SAR and molecular modeling investigations and in order to further probe the S2/S3 thrombin and FXa subsites. An efficient and concise synthetic route to the key aminolactam intermediate 4 was developed. The design, synthesis, and biological activity of this target and its P3-P4 diastereomer 1b is presented.  相似文献   

13.
The investigation of tripeptide aldehydes as reversible covalent inhibitors of human rhinovirus (HRV) 3C protease (3CP) is reported. Molecular models based on the apo crystal structure of HRV-14 3CP and other trypsin-like serine proteases were constructed to approximate the binding of peptide substrates, generate transition state models of P1-P1' amide cleavage, and propose novel tripeptide aldehydes. Glutaminal derivatives have limitations since they exist predominantly in the cyclic hemiaminal form. Therefore, several isosteric replacements for the P1 carboxamide side chain were designed and incorporated into the tripeptide aldehydes. These compounds were found to be potent inhibitors of purified HRV-14 3CP with Kis ranging from 0.005 to 0.64 microM. Several have low micromolar antiviral activity when tested against HRV-14-infected H1-HeLa cells. The N-acetyl derivative 3 was also shown to be active against HRV serotypes 2, 16, and 89. High-resolution cocrystal structures of HRV-2 3CP, covalently bound to compounds 3, 15, and 16, were solved. These cocrystal structures were analyzed and compared with our original HRV-14 3CP-substrate and inhibitor models.  相似文献   

14.
A series of novel N-(4,5-dihydroimidazol-2-yl)-1,3-dihydrobenzimidazole derivatives 2a-d, 3a-d and 4a-p were prepared and their structure was determined by IR and NMR spectroscopic data as well as X-ray analysis of carbonitrile 2a. The compounds were studied as potential inhibitors of the human blood platelet aggregation induced by adrenaline or ADP. Compounds of type 3 proved efficacious for the reduction of arterial blood pressure upon intravenous administration to normotensive rats.  相似文献   

15.
An extensive survey was carried out for compounds capable of regulating actin-binding proteins in a manner similar to phosphatidylinositol 4,5 bisphosphate (PI 4,5-P2). For this purpose we developed a sensitive assay involving release of radioactively phosphorylated actin from the fragminP-actin complex. We found that the structurally simplest lysophospholipid, lysophosphatidic acid (LPA), dissociated the complex between fragminP and actin, whereas other lysophospholipids or sphingosine-1-phosphate were inactive. Furthermore, LPA inhibited the F-actin severing activity of human gelsolin, purified from plasma or as recombinant protein, mouse adseverin and Physarum fragminP. Dissociation of actin-containing complexes by LPA analyzed by gelfiltration indicated that LPA is active as a monomer, in contrast to PI 4,5-P2. We further show that binding of LPA to these actin-regulatory proteins promotes their phosphorylation by pp60(c-src). A PI 4,5-P2-binding peptide counteracted the effects mediated by LPA, suggesting that LPA binds to the same target region in these actin-binding proteins. When both LPA and PI 4,5-P2 were used in combination we found that LPA reduced the threshold concentration at which PI 4,5-P2 was active. Significantly, LPA promoted the release of gelsolin from barbed actin filaments in octylglucoside-permeabilized human platelets. These results suggest that lysophosphatidic acid could act as an intracellular modulator of actin-binding proteins. Our findings can also explain agonist-induced changes in the actin cytoskeleton that are not mediated by polyphosphoinositides.  相似文献   

16.
Integration of a cDNA copy of the human immunodeficiency virus (HIV) genome is mediated by an HIV-1-encoded enzyme, integrase (IN), and is required for productive infection of CD4+ lymphocytes. It had been shown that 3,5-dicaffeoylquinic acid and two analogues were potent and selective inhibitors of HIV-1 IN in vitro. To determine whether the inhibition of IN by dicaffeoylquinic acids was limited to the 3,5 substitution, 3,4-, 4,5-, and 1,5-dicaffeoylquinic acids were tested for inhibition of HIV-1 replication in tissue culture and inhibition of HIV-1 IN in vitro. All of the dicaffeoylquinic acids were found to inhibit HIV-1 replication at concentrations ranging from 1 to 6 microM in T cell lines, whereas their toxic concentrations in the same cell lines were > 120 microM. In addition, the compounds inhibited HIV-1 IN in vitro at submicromolar concentrations. Molecular modeling of these ligands with the core catalytic domain of IN indicated an energetically favorable reaction, with the most potent inhibitors filling a groove within the predicted catalytic site of IN. The calculated change in internal free energy of the ligand/IN complex correlated with the ability of the compounds to inhibit HIV-1 IN in vitro. These results indicate that the dicaffeoylquinic acids as a class are potent and selective inhibitors of HIV-1 IN and form important lead compounds for HIV drug discovery.  相似文献   

17.
Solution- and solid-state c.d. spectra, as well as surface energetics values, were collected for a series of peptides derived from human salivary proline-rich glycoprotein (PRG). The acronyms and sequences for these peptides are as follows: PRG9-2 = NH2-G(1)-P(2)-CONH2, PRG9-3 = NH2-G(1)-P(2)-P(3)-CONH2, PRG9-4 = NH2-G(1)-P(2)-P(3)-P(4)-CONH2, PRG9-5 = NH2-G(1)-P(2)-P(3)-P(4)-H(5)-CONH2, PRG9-6 = NH2-G(1)-P(2)-P(3)-P(4)-H(5)-P(6)-CONH2, PRG9-7 = NH2-G(1)-P(2)-P(3)-P(4)-H(5)-P(6)-G(7)-CONH2, PRG9-8 = NH2-G(1)-P(2)-P(3)-P(4)-H(5)-P(6)-G(7)-K(8)-CONH2, and PRG9-9 = NH2-G(1)-P(2)-P(3)-P(4)-H(5)-P(6)-G(7)-K(8)-P(9)-CONH2. The presence of stable poly-L-proline II-like 'mini' helices in the solution state was found to be dependent on peptide chain length, pH, salt, and organic solvent type. Other conformational features such as kinks and beta-/gamma-turns were also found in the larger peptides. Solid-state peptide conformations were not necessarily related to their solution-state counterparts. Poly-L-proline II-like 'mini' helices, kinks, and beta-/gamma-turns were similarly found in the various substrate-bound PRG9 peptides. Surface energetics parameters suggested specific orientations for PRG9 peptides and their constituent acids and homopolymers.  相似文献   

18.
Autoprocessing of the precursor form of human herpesvirus 6 (HHV-6) proteinase at two sites (termed M and R) is required to generate the mature enzyme. Kinetic constants were determined for the hydrolysis of a series of synthetic peptide substrates by mature HHV-6 proteinase, purified to homogeneity. Truncation or replacement of individual residues in peptides mimicking the R-site sequence, indicated that the minimum length for effective hydrolysis by the viral enzyme was P4-P3-P2-Ala*Ser-P2'-P3'-P4' and revealed the importance of the P1 Ala and P4 Tyr residues. Consequently, relevant (P1 or P4) mutations were introduced into the precursor form of the proteinase and the ability of these altered proteins to autoprocess was examined. Introduction of Val in place of the P1 Ala at the M-site essentially abrogated cleavage but mature HHV-6 proteinase was still generated by cleavage at the R-site, indicating that processing of the M-site is not a prerequisite for cleavage of the R-site in the precursor. At the R-site, mutation of the P1 Ala, or of the preceding P4 Tyr residue, prevented processing at the R-site in the precursor so that the mature form of HHV-6 proteinase was not generated. The accumulated data suggest a possible new approach to the design of inhibitors for therapeutic intervention in the life cycle of herpesviruses.  相似文献   

19.
1. The formation of free radicals during enzyme catalysed oxidation of eight 3,5-disubstituted analogues of paracetamol (PAR) has been studied. A simple peroxidase system as well as cytochrome P450-containing systems were used. Radicals were detected by electron spin resonance (ESR) on incubation of PAR and 3,5-diCH3-, 3,5-diC2H5-, 3,5-ditC4H9-, 3,5-diOCH3-, 3,5-diSCH3-, 3,5-diF-, 3,5-diCl- and 3,5-diBr-substituted analogues of PAR with horseradish peroxidase in the presence of hydrogen peroxide (H2O2). Initial analysis of the observed ESR spectra revealed all radical species to be phenoxy radicals, based on the absence of dominant nitrogen hyperfine splittings. No radicals were detected in rat liver cytochrome P450-containing microsomal or reconstituted systems. 2. To rationalize the observed ESR spectra, hydrogen atom abstraction of PAR and four of the 3,5-disubstituted analogues (3,5-diCH3-, 3,5-diOCH3-, 3,5-diF- and 3,5-diCl-PAR) was calculated using ab initio calculations, and a singlet oxygen atom was used as the oxidizing species. The calculations indicated that for all compounds studied an initial hydrogen atom abstraction from the phenolic hydroxyl group is favoured by approximately 125 kJ/mol over an initial hydrogen atom abstraction from the acetylamino nitrogen atom, and that after hydrogen abstraction from the phenolic hydroxyl group, the unpaired electron remains predominantly localised at the phenoxy oxygen atom (+/-85%). 3. The experimental finding of phenoxy radicals in horseradish peroxidase/H2O2 incubations paralleled these theoretical findings. The failure to detect experimentally phenoxy radicals in cytochrome P450-catalysed oxidation of any of the eight 3,5-disubstituted PAR analogues is more likely due to the reducing effects that agents like NADPH and protein thiol groups have on phenoxy radicals rather than on the physical instability of the respective substrate radicals.  相似文献   

20.
Pseudomonas carboxyl proteinase (PCP), isolated from Pseudomonas sp. 101, and Xanthomonas carboxyl proteinase (XCP), isolated from Xanthomonas sp. T-22, are the first and second examples of unique carboxyl proteinases [EC 3.4.23.33] which are insensitive to aspartic proteinase inhibitors, such as pepstatin, diazoacetyl-DL-norleucine methylester, and 1,2-epoxy-3(p-nitrophenoxy)propane. The substrate specificities of PCP and XCP were studied using a series of synthetic chromogenic peptide substrates with the general structure, P5-P4-P3-P2-Phe-Nph-P2'-P3' (P5, P4, P3, P2, P2', P3': a variety of amino acids, Nph is p-nitro-L-phenylalanine, and the Phe-Nph bond is cleaved). PCP and XCP were shown to hydrolyze a synthetic substrate, Lys-Pro-Ala-Leu-Phe-Nph-Arg-Leu, most effectively among 28 substrates. The kinetic parameters of this peptide for PCP were Km = 6.3 microM, Kcat = 51.4 s-1, and kcat/Km = 8.16 microM-1.s-1. The kinetic parameters for XCP were Km = 3.6 microM, kcat = 52.2 s-1, and kcat/Km = 14.5 microM-1.s-1. PCP showed a stricter substrate specificity than XCP. That is, the specificity constant (kcat/Km) of each substrate for PCP was in general < 0.5 microM-1.s-1, but was drastically improved by the replacement of Lys by Leu at the P2 position. On the other hand, XCP showed a less stringent substrate specificity, with most of the peptides exhibiting reasonable kcat/Km values (> 1.0 microM-1.s-1). Thus it was found that the substrate specificities of PCP and XCP differ considerably, in spite of the high similarity in their primary structures. In addition, tyrostatin was found to be a competitive inhibitor for XCP, with a Ki value of 2.1 nM, as well as for PCP (Ki = 2.6 nM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号