首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 671 毫秒
1.
PTFE对纤维增强尼龙66材料摩擦学性能的影响   总被引:1,自引:0,他引:1  
考察了玻璃纤维(GF)增强尼龙66复合材料的摩擦磨损性能,以及PTFE对复合材料摩擦学性能的影响,利用扫描电镜分析了磨损形貌。结果表明:15%GF增强尼龙复合材料的摩擦学性能改善不明显,而且磨损量高于纯尼龙;加入PTFE在摩擦过程中形成了转移膜,降低了玻璃纤维增强尼龙复合材料的摩擦磨损,改善了其摩擦学性能。  相似文献   

2.
纳米金属粉填充Ekonol/PTFE复合材料的摩擦磨损性能研究   总被引:1,自引:0,他引:1  
评价了分别用不同体积含量的纳米镍粉和纳米铜粉填充聚苯酯/聚四氟乙烯(Ekonol/PTFE)复合材料体系的力学性能,利用M-200型磨损试验机研究了纳米Ni、纳米Cu含量对Ekonol/PTFE复合材料摩擦学性能的影响,借助扫描电子显微镜和能谱分析手段考察试样磨损表面和磨屑,并探讨其摩擦磨损机制。结果表明,纳米Ni能在一定范围内增加Ekonol/PTFE复合材料的冲击强度;纳米金属粉填入量较小时均能增加复合材料的洛氏硬度。纳米Ni与纳米Cu均能增加Ekonol/PTFE复合材料的摩擦因数并降低磨损率。其原因在于纳米金属粉在复合材料摩擦表面富集,通过金属分子间的吸引作用,增大复合材料的摩擦因数。  相似文献   

3.
Ekonol填充PTFE三层复合材料摩擦学性能研究   总被引:1,自引:0,他引:1  
在端面摩擦磨损试验机上对Ekonol填充PTFE三层复合材料试样进行了常温干摩擦实验,探讨了Ekonol含量对材料摩擦磨损性能及磨损机制的影响.结果表明,随着Ekonol含量的增加,材料的摩擦因数逐渐增大,但总体上比较小(<0.14),表现出了较好的摩擦性能,同时材料的耐磨损性能随Ekonol含量的增加而增大,说明Ekonol的加入有利于改善材料的摩擦学性能.  相似文献   

4.
采用M-2000型摩擦磨损试验机考察单一纳米氧化锌(ZnO)和石墨以及二者复合填充聚酰亚胺(PI)复合材料在干摩擦下与GCr15轴承钢对摩时的摩擦磨损性能,并利用扫描电子显微镜分析PI复合材料及其对偶件磨损表面形貌状况。结果表明,填充纳米ZnO后,PI复合材料的摩擦学性能变差,填充石墨后,PI复合材料摩擦学性能显著改善;而复合填充纳米ZnO和石墨后PI复合材料的摩擦学性能最佳,即二者存在明显的协同效应。PI复合材料的摩擦磨损性能同其在偶件磨损表面形成的转移膜的性质密切相关,纳米ZnO能显著增强转移膜与对偶件的结合强度,不同PI复合材料呈现不同的磨损机制。  相似文献   

5.
采用模压成型的方式制备超高分子量聚乙烯(UHMWPE)复合材料,通过AG-1型电子万能实验机和MM-200型摩擦磨损试验机分别研究填料对复合材料力学性能和摩擦磨损性能的影响,采用光学显微镜分析复合材料磨损表面的形貌。结果表明:聚丙烯(PP)和无机填料炭黑(CB)或CB与碳纤维(CF)混杂填料的加入使UHMWPE复合材料的拉伸强度降低,弯曲模量和硬度增加,其中UHMWPE/PP/CB/CF复合材料的弯曲模量和硬度增幅大于UHM-WPE/PP/CB复合材料。填料的加入可改善UHMWPE复合材料的摩擦磨损性能,当填料的质量分数为5%时,UHMWPE复合材料的摩擦磨损性能最好,且UHMWPE/PP/CB/CF复合材料的耐磨性能优于UHMWPE/PP/CB复合材料。与UHM-WPE相比,UHMWPE/PP/CB/CF复合材料的摩擦因数和磨痕宽度分别下降了10%和44%,UHMWPE/PP/CB复合材料则分别下降了12%和42%。光学显微镜观察表明填料的加入大大改善了UHMWPE的磨粒磨损,复合材料表面以较浅的犁沟磨损为主要特征。  相似文献   

6.
钛酸钾晶须增强聚四氟乙烯复合材料摩擦磨损机制的研究   总被引:3,自引:2,他引:1  
研究了钛酸钾晶须(PTW)对聚四氟乙烯(PTFE)复合材料力学及摩擦学性能的影响,并与碳纤维(CF)和玻璃纤维(GF)的填充效果进行了比较.结果表明:加入PTW后,PTFE的硬度、冲击强度、拉伸强度、弯曲强度、压缩强度及耐磨性能比纯PTFE的分别约提高了10%、30%、20%、15%、20%和300倍;PTW/PTFE的耐磨性能要优于GF/PTFE及CF/PTFE.SEM研究表明: PTW/PTFE的内部结构比GF/PTFE及CF/PTFE的均匀致密,具有显微增强效果;PTW/PTFE的磨损面比GF/PTFE及CF/PTFE的要平整,其转移膜也较GF/PTFE及CF/PTFE的更为均匀、连续、致密.  相似文献   

7.
聚苯酯填充聚四氟乙烯复合材料摩擦学行为研究   总被引:7,自引:3,他引:7  
采用聚苯酯(Ekonol)、Ekonol/PAB纤维增强聚四氟乙烯(PTFE)制备利用转移膜润滑的摩擦副材料,并研究了两组材料在于摩擦条件下与9Cr18轴承钢对摩时的摩擦学性能;运用扫描电镜分析了两组材料磨损表面形貌和磨损机理。结果表明:随着Ekonol含量的增大,Ekonol填充PTFE复合材料的摩擦因数逐渐增大,当Ekonol质量分数超过25%时摩擦因数略有下降,磨损方式由以犁削磨损为主转变为以疲劳磨损为主;而Ekonol/PAB纤维填充门FE复合材料的摩擦因数,随Ekonol含量的增大而增大,磨损方式由以粘着磨损为主转变为以疲劳磨损为主。Ekonol/PAB纤维填充PTFE复合材料的摩擦学性能优于Ekonol填充PTFE复合材料。  相似文献   

8.
研究碳纤维/聚四氟乙烯(CF/PTFE)、玻璃纤维/聚四氟乙烯(GF/PTFE)复合材料与氮化硅陶瓷配副在海水环境下的摩擦学性能与润滑机制,分析滑动速度对摩擦副海水润滑性能的影响规律。结果表明:在海水润滑条件下,随着滑动速度的增加,PTFE、CF/PTFE、GF/PTFE材料与Si3N4陶瓷配副时的摩擦学性能均有明显改善,摩擦因数与磨损率均呈显著降低的趋势,其中CF/PTFE复合材料表现出更为优异的摩擦学性能,在1 000 r/min滑动速度下摩擦因数低至0.026。磨损表面表征结果表明,在海水润滑条件下,PTFE基复合材料在摩擦过程中由于摩擦化学反应生成了润滑膜,可为摩擦副提供良好的润滑和减磨作用,从而减少摩擦磨损行为的发生。  相似文献   

9.
采用模压烧结法制备了超高分子量聚乙烯(UnMWPE)/聚苯酯(Ekonol)复合材料;采用45#钢为摩擦对偶件的往复滑动式摩擦磨损试验机,在室温下测试了Ekonol含量对UHMWPE在干摩擦和油田污水条件下的摩擦磨损性能影响,实验条件为:接触压力7.5 kN、滑动速度1.8 m/min、时间3 h;采用扫描电子显微镜观察复合材料磨损表面形貌并分析了磨损机制.结果表明:填充加%Ekonol可以显著改善UHMWPE的摩擦磨损性能.与干摩擦条件相比,在油田污水条件下,UHMWPE基复合材料摩擦因数提高不明显,但磨损率明显增大;在干摩擦条件下,纯UHMWPE的磨损机制主要为粘着和犁沟效应,UHMWPE/Ekonol复合材料的磨损机制为粘着和疲劳,而在油田污水条件下UHMWPE/Ekonol复合材料的磨损机制主要为磨粒磨损和疲劳.  相似文献   

10.
为了考察外界条件对聚甲醛复合材料摩擦学特性的影响,用摩擦磨损实验对模压法制备的Ekonol/POM和Ekonol/G/MoS2/POM复合材料在不同载荷和转速下的摩擦学性能进行了研究,并用扫描电镜(SEM)对磨损表面进行了观察和分析,在此基础上探讨了复合材料在不同条件下的磨损机制。结果表明:随着载荷或转速的增加,聚甲醛(POM)及其复合材料的摩擦因数呈先增大后减小的趋势,而材料的磨损量则随着载荷或转速的增加而增大;随着载荷或转速的提高,ZOGM20的磨损机制发生了由粘着磨损到疲劳磨损再向塑性流动的转变。  相似文献   

11.
The effect of a rare earth (RE) surface treatment on the mechanical and tribological properties of carbon fiber (CF) reinforced polytetrafluoroethylene (PTFE) composites was experimentally investigated. The tensile properties of the CF reinforced PTFE (CF/PTFE) composites treated with air oxidation and RE modifier were superior to those of untreated CF/PTFE composites, while RE treatment was most effective in promoting the tensile strength and strain at break of the CF/PTFE composite. The bending strength of the RE treated CF/PTFE composite was improved by about 16% compared with that of untreated composites, while 2% improvement was achieved by air oxidation. Under oil-lubricated conditions, RE treatment was more effective than air oxidation to reduce the friction coefficient and wear of PTFE composite. RE treatment effectively improved the interfacial adhesion between CF and PTFE. The strong interfacial coupling of the composite made CF not easy to detach from the PTFE matrix, and prevented the rubbing-off of PTFE, accordingly improved the friction and wear properties of the composite.  相似文献   

12.
Black phosphorus (BP), a newly emerging two-dimensional material, has recently received considerable attention. Our recent work suggested that BP nanosheets exhibit extraordinary mechanical and lubrication properties. In the present work, the tribological properties of polyetheretherketone (PEEK)/polytetrafluoroethylene (PTFE) and carbon fiber (CF)/PTFE composites with BP nanosheets have been investigated. The morphologies and surface element distribution of the worn tracks of the tribopair surfaces were examined by different analytical techniques. The results show that the coefficients of friction (COFs) of both the PEEK/PTFE and CF/PTFE composites decreased dramatically after the addition of BP nanosheets, and the minimum COF of the composite was 0.04, which was a quarter of that of the PTFE composite without BP nanosheets. After BP nanosheets were added into the composites, the wear rate of the PTFE/PEEK composite decreased dramatically, while that of the CF/PTFE composite increased significantly with the increase in the filler concentration. The analysis of the lubrication mechanism of the PTFE composite with BP nanosheets suggested that BP nanosheets could be constantly supplied into the contact area and gradually formed a BP film composed of phosphorus oxide and phosphoric acid on the counterpart surface instead of the formation of PTFE transfer film. The formed BP transfer film promoted the friction reduction and the disappearance of the adhesive wear.  相似文献   

13.
用KH550硅烷偶联剂表面改性的硅灰石纤维(WF)填充PTFE,在MPX-2000型磨损试验机上研究复合材料的摩擦磨损性能,并与经典的炭纤维(CF)填充PTFE复合材料进行比较。采用SEM对磨损面和对偶面进行分析。结果表明:较高载荷(200和300 N)下复合材料摩擦因数随WF含量变化的幅度不大,较稳定地维持在较低值;细小尺寸WF填充PTFE复合材料的耐磨性能较好,在WF质量分数为10%时,复合材料的磨损量只有相同含量CF填充PT-FE复合材料的81%;细小尺寸WF填充PTFE复合材料的磨损面较为平整,存在轻微黏着磨损,其对偶面转移膜平整光滑、结构致密;而CF/PTFE复合材料磨损面存在许多裸露和碎断的CF,犁削和磨粒磨损是主要的磨损形式。  相似文献   

14.
In this article, we studied and explored the impact of viscoelasticity on the friction and wear behavior of pure polytetrafluoroethylene (PTFE), carbon–graphite PTFE composite, and glass fiber–MoS2 PTFE composite. Tests were carried out using a specific reciprocating tribometer for valve seal application. The worn surfaces of the PTFE composites and the transfer films formed on the counterface were examined with a scanning electron microscope (SEM). Experimental results revealed that the addition of filler materials was effective in reducing the wear volume in all composites studied. In addition, the friction coefficient and wear resistance showed high sensitivity to the viscoelastic behavior of the PTFE seal. SEM investigation showed that the incorporation of particulate fillers into the PTFE matrix could dramatically reduce and stabilize the transfer films to the counterface, so they largely decreased the wear of the PTFE composites.  相似文献   

15.
The use of ionic liquids (ILs) as lubricants has received increasing attention in recent years. The use of ILs, however, is limited by the corrosion problem and their potential toxic property. Here we present the results of our initial study on the tribological properties of carbon fiber (CF)-filled polytetrafluoroethylene (PTFE) composites, which have an excellent chemical resistance property, lubricated by choline chloride ILs. The difference between choline chloride ILs and water and hydraulic oil as lubricants was studied at the same time, as was the effect of the anion on the lubricating property of choline chloride ILs. The worn surface and transfer film of CF/PTFE composites were studied by scanning electron microscopy. Our results indicate that the lubricating property of choline chloride ILs is much better than that of water and hydraulic oil. The friction coefficient and wear rate of CF/PTFE composites lubricated with ILs were approximately 60 and 50 % lower than those under the dry friction condition. Among the three kinds of ILs tested, the best tribological properties of the CF/PTFE composites were found for those sliding in the mixture of 1,2-propanediol and choline chloride. The worn surface and transfer film of CF/PTFE composites were also much smoother than those under the dry friction, water lubrication, and hydraulic oil lubrication conditions.  相似文献   

16.
Cryogenic treatment of polytetrafluoroethylene (PTFE) has proved beneficial in improving the abrasive wear resistance of several polymers, and it was thus assessed in an adhesive wear mode, as well. Preliminary investigations on the effect of cryogenic treatment on the tribological properties, in adhesive wear mode, and mechanical properties of neat PTFE and it composites filled with bronze or short glass fibres (GF) were carried out. It was found that, although the improvement in the wear and friction performance of neat PTFE and a GF + PTFE composite was significant, no such positive effect was observed for the bronze + PTFE composite. On the contrary, this composite showed a deterioration in performance. The reason behind the improvement in the tribological behaviour of neat PTFE and the GF + PTFE composite could not be clearly understood. However, it was confirmed that, if the treatment adversely affected the mechanical properties, then the tribological performance also deteriorated. An examination of the worn surface of the material and the counterface disc using a scanning electron microscope revealed changes in the microstructure due to the treatment. It was also confirmed from these SEM studies that the compatibility of bronze and PTFE was very poor, which led to poor performance of the composite both in the untreated and the cryo‐treated form. Further detailed investigation and analysis of various materials and composites, however, are necessary to establish the utility of this technique.  相似文献   

17.
Past studies have shown that the inclusion of fillers in a polytetrafluoroethylene (PTFE) matrix can improve wear resistance by nearly four orders of magnitude. These discoveries have prompted several tribological experiments over the past decade that have highlighted the importance of particle size, tribofilm formation, filler percentage, and environment. To evaluate the effect that microstructure plays on a composite’s tribological performance, PTFE-filled polyamide-imide (PAI) composites were made and tested. To investigate the role of microstructure on the tribological performance of fluoropolymer composites, 12 composite formulations of PTFE and PAI over a range of 0 to 100 vol% PAI were tested. PTFE–PAI composite samples were slid against a stainless steel countersample using a linear reciprocating tribometer under a nominal 6.35?MPa contact pressure at 50.8?mm/s sliding speed. Of the samples tested, the 25 vol% PAI showed a remarkable mean steady-state wear rate of k?=?3?×?10?9 mm3/Nm over an extreme distance of 360?km. A serial imaging investigation revealed that a mechanical interlocking of the two polymers occurred during the sintering process, which possibly contributed to the ultralow wear rates observed in this polymer–polymer composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号