首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
当被测物体不满足稀疏条件时,传统同轴数字全息相位恢复方法无法消除共轭像的干扰,也无法获得正确的相位重建结果;而离轴数字全息受最小记录距离的限制分辨率较低。为此,提出了一种将离轴和同轴数字全息相结合的复合数字全息成像方法。该方法只需记录一幅离轴全息图和一幅同轴全息图;采用约束最优化算法从离轴全息图中得到记录平面内物光波的近似相位分布;将此相位信息与同轴全息图的强度信息合成记录面内物光波复振幅的初始值;再利用迭代算法实现物体强度像和相位像的高分辨率重建,该方法的理论分辨率与图像传感器的分辨率相同。实验结果表明,该方法可以充分利用图像传感器的空间带宽积,能在对复杂物体成像时消除共轭像,实现大视场、高分辨率数字全息成像,实验成像分辨率接近理论分辨率。  相似文献   

2.
为了得到数字全息图波前的准确重建场,采用常见的波前重建算法进行实验研究和理论分析,得到了物光波通过非单一介质传播时的等效距离,并利用该等效距离修改常用波面重建公式中的相关参量,与柯林斯公式对数字全息图进行重建的结果进行比较分析,发现当物光波通过非单一介质时,采用等效距离修正的重建公式或者柯林斯公式均能得到准确的数字全息再现像。结果表明,采用等效距离对数字全息图进行波前重建的结果与采用柯林斯公式重建的结果一致,此方法能够简化光波通过非单一介质时对数字全息图的波前准确重建。该研究结果可为显微数字全息及数字全息检测应用提供有益的参考。  相似文献   

3.
数字全息再现像的细节显示和视觉畸变矫正   总被引:5,自引:1,他引:5  
范琦  赵建林  李世扬  陆红强  徐莹 《中国激光》2005,32(10):401-1405
在分析数字全息系统的最小分辨距离和再现像平面上的采样间隔的基础上,提出了一种在用菲涅耳变换法再现数字全息图时,能清楚显示再现像细节的简单方法,这种方法能有效地提高再现场的显示分辨率。通过给由CCD记录的数字全息图补零,可使再现像平面上采样间隔减小,使再现像具有更多的像素,得到保留了更多记录信息的高质量再现像。用同样的方法,也可以矫正由于CCD靶面尺寸在水平和竖直方向上的不一致造成再现像的视觉畸变。实验结果表明此方法有很好的效果。  相似文献   

4.
针对微尺寸(1 mm)透射型物体的数字全息显微测量中存在的相位畸变问题,提出一种相位矫正方法,通过改进预放大离轴菲涅耳数字全息记录光路以及全息图的卷积再现算法,消除了相位分布的一次畸变和二次畸变.使用该方法测量USAF1951分辨率板,成功矫正了其再现像的相位畸变,并得到了横向尺寸0.25 mm区域的清晰相位分布三维重建图.该方法的优点在于通过对记录光路和再现算法的改进,矫正相位畸变,直接得到正确的再现像相位,简化了相位补偿计算的步骤,很大程度地降低了相位重建过程的复杂程度,有利于对物体进行实时探测和快速重建.  相似文献   

5.
甘雨  刘红林  高敬敬  宋纯元  张栩瑜  韩申生 《红外与激光工程》2022,51(8):20220072-1-20220072-7
利用相位恢复算法可以从光纤近端的光强分布求解光纤远端的场强分布。光纤的响应可以用传输矩阵描述。实验上则是在不同的输入情况下对输出端的光强分布进行足够数量的采样来测量传输矩阵。显然,采样点的位置分布,包括采样点数目和间隔,影响着传输矩阵的测量,而相位恢复算法的精度和效率与传输矩阵有关。文中提出采样间隔应该大于出射散斑大小,以满足传输矩阵不同行的统计独立性,在保证图像重建质量的条件下减少采样点数,提高重建效率。实验结果表明,当采样间隔小于散斑大小时,相同的图像重建质量下,随着采样间隔的增大,光场重建所需的采样点数量明显下降。当采样间隔大于散斑时,所需的采样点数量变化缓慢,约为输入图像像素数量的3.5倍。采样间隔固定时,随着采样点数的增加,相位恢复算法消耗的时间先减小后增大,因此存在一个最佳的采样间隔与采样点数。  相似文献   

6.
相位恢复问题是物理光学领域的一个经典问题。基于迭代算法的传统多距离相位恢复方法利用多幅离焦强度实现波前重建,具有重建精度高、光学系统紧凑、稳定性高的特点。这类算法中的振幅与相位重建算法(Amplitude-Phase Retrieval, APR)能实现高质量复振幅重建,具有良好抗噪性能,但受限于其缓慢的收敛速度和停滞问题,导致成像对比度低。提出在迭代过程中灵活获取样本数字外围,将支撑域约束与APR算法结合,以改进标准APR算法的收敛速度和收敛精度,数值仿真验证了该算法的有效性,具有可移植性和实际应用价值。  相似文献   

7.
压缩感知相移数字全息术   总被引:1,自引:0,他引:1  
相移数字全息图用传统数字再现可以消除零级像与共轭像,但数字全息术记录的全息图及数字再现像的分辨率被CCD的分辨率所限制.将新兴的压缩感知算法用于数字全息图的稀疏重建,以实现由部分全息图数据得到高分辨率再现像.分析了压缩感知用于重建数字相移全息图的原理,并利用该算法对计算机模拟的相移全息图进行了重建.结果表明,压缩感知算法能够对数字全息图稀疏重建,利用50%的部分全息图数据重建出了较高质量的再现像,并消除了零级像和共轭像.当选用合适的观测器如数字微反射镜器件或随机位相片实现随机观测矩阵时,可以实现单像素成像,从而突破记录全息图CCD分辨率的限制.  相似文献   

8.
同轴全息术得到的相位通常都有弯曲和畸变,且0级和±1级再现像相互重叠,使得以往在离轴全息中常用的相位补偿处理技术在同轴菲涅耳全息中效果不佳。为了解决该问题,采用一种仅需拍摄一幅同轴菲涅耳数字全息图,对该全息图做必要处理得到另一幅全息图,通过将两幅全息图的衍射再现光场相减消除相位弯曲,以及0级像和矩孔衍射对相位的影响,从而提取待求光场相位近似值的方法,进行了相应的理论推导和实验验证。结果表明,该算法相较以往使用的相位掩膜方法能够得到更好的结果。  相似文献   

9.
提出了一种新的数字全息多平面成像技术:将非共轭二次扭曲位相因子作用于实验记录的数字全息图,只需一次菲涅尔衍射便可同时对多个成像平面进行重建。首先介绍了非共轭二次扭曲位相因子多平面成像原理,然后开展实验验证了方法有效性。此方法只需记录一幅处于多个不同平面物体的数字全息图,依据该理论选择合适参数,可在任意位置重建多个平面再现像。采用均方根误差(RMSE)与峰值信噪比(PSNR)作为图像质量评价标准,比较了不同再现距离的成像质量。文中提出方法在无需对光路进行对称设计的前提下,可同时对多个平面进行数字聚焦,延拓了菲涅尔数字全息重建图像的焦深。  相似文献   

10.
成珂阳  李琦 《中国激光》2023,(19):246-256
由于太赫兹面阵探测器像元数少,且目标像素数较少,全息图的衍射效应明显,因此其重建较可见光全息图重建困难。研究两种将深度学习用于二维连续太赫兹同轴数字全息振幅重建的方法,并与传统的角谱法(ASM)和带切趾的振幅约束相位恢复算法(APRA)进行对比。第一种是端对端的U-net网络重建方法(H-UnetM),即网络输入图像为全息图;第二种是角谱法加U-net网络重建方法(AS-UnetM)。仿真研究表明,对于记录距离15~20 mm、分辨率0.3~0.5 mm目标的2.52 THz全息图,AS-UnetM重建优于APRA,而H-UnetM仅优于ASM但不如APRA。最后通过真实实验加以验证,结果表明H-UnetM能够重建目标,但部分背景噪声也被突出,而采用ASUnetM在目标附近的重建效果最佳。  相似文献   

11.
利用数字全息和相位恢复算法实现信息加密   总被引:2,自引:1,他引:2  
季瑾  黄飞  王亮  冯少彤  聂守平 《中国激光》2007,34(10):1408-1412
提出了一种基于数字全息技术和相位恢复算法的信息加密方法。运用相位恢复算法得到数字全息图的纯相位频谱分布,实现了对全息图的加密;对纯相位频谱分布实施逆傅里叶变换(IFT)则可以得到解密后的全息图。利用菲涅耳近似法和卷积法对解密后的全息图进行数字重构得到了再现像。该加密方法区别于常用的随机相位加密方法,不再需要制作随机相位板。实验结果表明,该加密方法既适用于对二维图像加密,也适用于对三维物体进行加密。  相似文献   

12.
侯瑞宁 《激光技术》2013,37(3):362-364
为了克服2步数字全息需要记录多幅图像且在进行相移时理论相移值和实际相移值总存在误差的缺点,提出了一种用单幅同轴数字全息图再现物体真实像的方法。该方法利用希尔伯特变换可以实现数字相移并且可同时滤除直流分量的特点,通过对记录的全息图进行两次希尔伯特变换,即可依次得到没有0级分量的相移量为π/2的全息图和无相移的全息图,然后运用2步相移数字全息处理方法即可再现出原物体的像。结果表明,该方法能很好地再现原物体的像。  相似文献   

13.
基于Whittaker-Shannon抽样定理,对计算全息的采样进行了研究,获取适合计算全息图的采样间隔,并研究了菲涅尔全息图采样间隔与全息图尺寸、物点坐标及物点到全息面距离的关系以及傅里叶变换全息中全息面记录点数与物点采样间隔的关系.实验模拟表明此方法采样后的全息图再现像效果较好,且有利于减少全息图的信息存储量和提高全息图的计算速度.  相似文献   

14.
基于迭代傅里叶变换的3维全息图计算新方法   总被引:1,自引:0,他引:1       下载免费PDF全文
裴闯  蒋晓瑜  王加  宗艳桃 《激光技术》2013,37(3):347-352
为了进行3维物体全息图的快速运算,在迭代傅里叶变换算法基础上,通过分析透镜的傅里叶变换性质,采用编码球面相位因子的方法,将全息图平行光再现等效为点光源再现。将球面相位因子加入到迭代运算中,获得了具有深度特征的3维物体全息图;同时利用球面相位因子查表运算法简化了相位因子的计算,提高了算法的迭代速度,并基于空间光调制器进行了3维物体的再现实验。结果表明,该算法具有良好的收敛特性,计算的全息图能够在不同距离的像面实现对应层面的物场再现,具有3维的视觉效果。  相似文献   

15.
介绍了一种基于相息图原理的用于智能显示的纯相位型计算全息图的设计方法,并在此基础上,以雪花图形和分划板图形为例,完成了全息元件实验样件的制作及全息再现实验,这种实时再现的图像可以用于智能显示。在已知记录介质折射率的情况下,通过控制纯相位型计算全息图记录介质表面微结构的宽度和高度来调制光波,得到所需图像。采用逐步迭代的傅里叶变换算法来获取纯相位型计算全息图的相位结构,为了降低相位型计算全息图的制作难度,提出量化数学模型,并对所设计的相位结构进行量化处理,给出了纯相位型计算全息图的4台阶浮雕型相位结构。全息元件的尺寸设定为6mm×6mm,工作波长为650nm,衍射结构的最小特征尺寸为8μm。理论计算和模拟再现像的结果表明,在未考虑加工误差的条件下,所提供的这种用于智能显示的纯相位型计算全息图的设计方法是可行的。此方法可推广用于其它任意特定图案的纯相位型计算全息图的设计,也可用于设计具有光束整形功能的衍射光学元件,如离轴照明的光束的整形匀光器件等。用于智能显示时,用平行光照射制作的实验样件,只得到的单一的衍射图像,不存在其他衍射级次的图像,在考虑采用台阶量化结构和存在加工误差的情况下,衍射效率仍然很高。若改变设计的全息图相位的正负,并用平行光以特定的角度照射制作此相位型计算全息图,可用于全息瞄准。  相似文献   

16.
潘卫清  潘云 《光电子.激光》2011,(10):1557-1563
为了缓和传统数字全息重建算法在分辨率和计算量之间的相互制约关系,基于欠采样数字解调理论,通过对恢复后的物波场先进行空域或频域减采样,滤除物波中的冗余信息,然后通过补零算法提高有用信息的重建分辨率,从而实现高分辨数字全息的快速重建。分别给出了减采样菲涅尔重建(FR)算法和减采样角谱重建(AS)算法的最大允许采样间隔,推导...  相似文献   

17.
韩超  吴伟  李蒙蒙 《中国激光》2014,(2):125-126
高计算复杂度是目前制约全息显示的瓶颈,针对这一难题,提出一种基于压缩感知理论与无透镜傅里叶变换相结合的全息图编码与重现算法。利用计算机生成无透镜离轴傅里叶全息图,再用压缩感知理论对全息图进行压缩采样和恢复,最后对恢复出的全息图进行重构,并再现原始图像。该方法的优点在于只采样全息图的部分有用系数就能很好地恢复出原始图像,从而解决了传感器采样数据过大的问题,降低了计算复杂度。仿真实验表明,20%的压缩采样时,重构出的全息图的相关系数为0.85,而50%时该系数为0.9999。通过搭建的全息再现系统进行实际验证,实验结果表明能够清晰地再现出原始图像,从而证明了该方法的可行性。  相似文献   

18.
提出一种在同一张全息图上记录多个三维物体菲涅耳衍射分布的数字化编解码方法。首先利用一次快速傅里叶变换算法计算三维物体全息面上的物光波复振幅分布;然后对物光波数据预处理以克服频谱面上各三维物体数字频谱的混叠问题;最后控制不同的载频系数制作计算全息干涉图。数字再现通过在全息图数字频谱面的特定位置提取有效频谱分量,再计算离散菲涅耳逆变换的方法实现各原始三维物体的数字重建。仿真实验结果表明所提出的方法实现了不同制作参数的多个三维物体的同时记录,并且具有良好的数字再现质量,全息图制作参数如波长、再现距离、载频系数还可作为密钥,实现多个三维物体的加密存储。  相似文献   

19.
李兴广  陈磊 《半导体光电》2011,32(5):724-727
为了克服多频调制激光测距系统中相位检测算法复杂、实时性差、精度低的问题,提出一种距离测量方法。该方法将测距回波信号通过改进的正交计算模块得到精确的相位延迟正切值,再通过坐标旋转计算机(CORDIC)角度计算模块得到相应的角度,结合正交同相(I)和正交(Q)支路输出的符号位和相位测距解模糊算法计算出精确的距离。实验结果表明,系统测距误差与回波信号的信噪比和计算模块的字长有关,在SNR为10dB,字长为16bit时,相位精度为0.03°,距离精度为0.125mm。  相似文献   

20.
提出了一种基于角谱衍射理论的误差扩散算法。通过分层角谱算法计算得到三维物体的复振幅全息图,利用误差扩散法计算得到纯相位全息图,并重建出清晰的再现像,实现了对三维物体纯相位全息再现像的散斑噪声的抑制。仿真实验验证了该方法的可行性及优越性,所提方法明显提高了重构图像的质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号