首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 406 毫秒
1.
电子受体对厌氧/好氧反应器聚磷菌吸磷的影响   总被引:2,自引:0,他引:2  
为对聚磷菌有进一步的了解,以厌氧/好氧生化反应器中的聚磷菌为试验对象,研究了3种不同电子受体(O2、NO3-N、NO2-N)对聚磷菌吸磷效果的影响.结果表明:传统的厌氧/好氧生化反应器中存在有反硝化聚磷菌,且随着NO3-N质量浓度的不同,反硝化聚磷速率和总量也不同,而低水平的COD/TP将有利于反硝化聚磷菌的生长;此外,NO2-N也可参与聚磷菌缺氧吸磷反硝化的过程,但高质量浓度的NO2-N(本试验结果为≥95mg/L)将会对聚磷菌产生抑制作用.试验证实,以氧为电子受体的聚磷速率和聚磷总量明显高于NO3-N和NO2-N,但是,后二者的能耗、污泥产生量低于前者.  相似文献   

2.
反硝化聚磷诱导过程中聚磷速率的变化特性分析   总被引:1,自引:1,他引:1  
利用SBR系统按照厌氧-缺氧-好氧运行方式进行了不同条件下的反硝化聚磷试验,研究了不同电子受体种类及浓度对聚磷菌(PAOs)和反硝化聚磷菌(DNPAOs)行为的影响,试验结果很好的证实了PAOs中存在两类细菌:可利用NO3^-及DO作为电子受体的DNPAOs和仅可利用DO作为电子受体的non-DNPAOs,对厌氧-缺氧-好氧过程中,缺氧段和好氧段聚磷速率随时间的变化特点进行了分析和讨论。  相似文献   

3.
研究了亚硝酸盐作为电子受体对反硝化除磷系统的影响。在实验室模拟SBR反应器,在厌氧/缺氧交替运行方式下,利用模拟生活废水,分别选取不同浓度的亚硝酸盐作为电子受体进行反硝化除磷系统的培养和驯化,对不同亚硝酸盐浓度下反硝化除磷系统的反硝化率以及反硝化吸磷率等因素进行了交叉对比分析。结果表明:在经过长期驯化的条件下,在合适的NO-2-N浓度范围内,DPB能以NO-2-N为电子受体进行反硝化除磷,抑制浓度为15 mg/L;在低于15 mg/L的浓度范围内,NO-2-N的消耗量以及反硝化速率随着起始NO-2-N浓度的增大而增加,在15 mg/L之后又随着其浓度的增大而降低;5~15 mg/L NO-2-N浓度下的释磷速率以及吸磷量增加得尤为明显,15 mg/L浓度下出现了类似反硝化速率的拐点曲线,在15 mg/L浓度时释磷量和吸磷量均为最高。由此可得本实验中NO-2-N的抑制浓度为15 mg/L,缺氧吸磷量与厌氧释磷量有着比较好的线性关系,拟合的直线方程为y=0.580 6+1.697 4x,两者具有线性的相关关系。  相似文献   

4.
在序批式反应器(SBR反应器)中,采用不同培养方式培养反硝化除磷菌,考察了其脱氮除磷效果,并考察了在投加不同电子受体浓度条件下的反硝化除磷效果.结果表明,直接厌氧-缺氧的培养时问远少于厌氧-好氧转化为厌氧-缺氧的培养时间,且效果更佳.当外加电子受体浓度(即NO3-N的浓度)为25 mg/L时,两个SBR反应器的脱氮除磷效果均为最佳,出水含氮、磷量较低.  相似文献   

5.
SBR法处理低碳源城市污水除磷脱氮效果及规律研究   总被引:6,自引:0,他引:6  
介绍了用SBR法(序批式活性污泥法)处理低碳源城市污水,研究了生物除磷效果和好氧反硝化脱氮效果及其影响因素.试验结果表明,磷的出水质量浓度低于0.8mg/L,去除率达到92%~98%;磷的厌氧释放是好氧吸收的前提条件,而且厌氧释磷量和好氧吸磷量存在线性关系;DO是影响好氧反硝化的主要因素,当DO=2mg/L时,总氮的去除率最大.  相似文献   

6.
NO3-、NO2-作为生物除磷最终电子受体的研究初探   总被引:4,自引:0,他引:4  
论述了生物除磷过程中以NO3^-、NO2^-作为最终电子受体时,厌氧条件下释磷规律,缺氧条件下PO4^3--P的去除效果以及缺氧段NO2^--N的变化情况.得出结论:亚硝酸盐在一定程度上可以充当生物除磷的最终电子受体;以亚硝酸盐为电子受体,缺氧段的反硝化率要大于以硝酸盐为电子受体的情况;高浓度亚硝酸盐会抑制反硝化聚磷茵的厌氧释磷,而且这种抑制作用不是瞬间的,至少会持续一段时间。  相似文献   

7.
目的实现以亚硝酸盐为电子受体的反硝化除磷系统的启动,并对系统的除磷效果进行考察.方法采用分阶段培养驯化的方式进行启动,第一个阶段通过厌氧/好氧交替运行富集聚磷菌,剩下的两个阶段通过先投加NO3^-N,再由电子受体NO3^-N过渡到NO2^-N的方式对以NO2^-N为电子受体的反硝化聚磷菌(DPAO)进行筛选.结果经过131d的运行,成功地实现了系统的启动,且稳定后的系统具有良好的反硝化除磷能力,出水P(PO4^3-)仅为0.86mg/L,磷的去除率达到了89%左右.结论最终启动完成之后,以NO2^-N为电子受体.从各阶段磷的去除率可以看出,不同电子受体作用下除磷率有所不同,除磷效果由高到低依次为O2〉NO3^--N〉NO2^-N.  相似文献   

8.
DO对除磷过程的长期影响   总被引:6,自引:0,他引:6  
为研究溶解氧(DO)对除磷过程的长期影响,采用序批式间歇反应器(SBR),通过设置好氧阶段DO的不同(5.5~7.0 mg/L和0.5~1.5 mg/L),系统地考察长期运行在这两种DO水平下强化生物除磷系统(EBPR)除磷过程的特点.结果表明:在pH 7.2~7.6,温度(23±0.5)℃时,高DO对放磷和吸磷两个阶段均会产生负面影响.其厌氧阶段的放磷量比低DO情况下要少43.08%.吸磷过程在好氧阶段初始30 min内进行得最快,该期间内高低DO污泥的最大比吸磷速率分别为6.27和11.45 mg.g-1.h-1,前者比后者少45.24%.分析认为,过度曝气导致的聚磷菌体内聚β羟基丁酸盐(PHB)的不足和过多的进水碳源被用作反硝化,是本试验高DO状态下除磷性能恶化的主要原因.高DO在抑制丝状菌膨胀方面并不比低DO占有明显的优势,污泥除磷性能的改善往往伴随着污泥沉降性的好转.  相似文献   

9.
高浓度氨氮废水自养半短程硝化试验   总被引:1,自引:0,他引:1  
在SBR反应器中采用消化污泥驯化启动自养半短程硝化系统。在温度35±1℃,溶解氧浓度(DO)1.0~1.5mg/L的条件下,可实现反应器的短程硝化。试验结果表明:反应器进水NH3-N浓度为510mg/L、HRT=12h、DO=0.8~1.2mg/L、pH=7.5~8.3时,SBR反应器出水NO2^--N和NH3-N的平均浓度分别为253.7和246.9mg/L,P(NO2^--N)/p(NH3-N)为1.02,满足ANAMMOX反应器的进水要求。  相似文献   

10.
探讨了碳氮比较低(C/N〈5)时,不同原水进水C/N对MUCT工艺性能的影响。试验结果表明:随着进水C/N的增加,出水TN去除率升高,最高为84.1%,缺氧区2出水NO3^--N浓度从2.76mg/L降低到0mg/L;随着C/N的增加,好氧区的硝化速率下降,好氧吸磷率增加,缺氧区2吸磷常数有所增加,和利用复杂的有机物做为碳源的吸磷速率常数接近。  相似文献   

11.
结合平板分离法、poly-P和PHB染色以及柠檬酸铁还原实验,从污水处理厂活性污泥中分离获得一株以Fe(Ⅲ)为电子受体厌氧聚磷的聚磷菌株AP3,其16S rDNA与Pseudomonasmosselii ATCCBAA- 99的同源性为99%.菌株AP3于柠檬酸铁液体培养基和无铁液体培养基中厌氧避光、27℃静置培养,在含有Fe(Ⅲ)的培养基中比在无Fe(Ⅲ)的培养基中生长好;菌株AP3在无Fe(Ⅲ)的培养基中,表现出典型的厌氧释磷特征,释磷量为3.68 mg·L-1;在含有Fe(Ⅲ)的培养基中,先厌氧释磷,释磷量为6.62 mg·L-1,10h之后开始厌氧聚磷,聚磷量为5.89mg· L-1.菌株AP3能以Fe(Ⅲ)为电子受体,具有厌氧聚磷特征.  相似文献   

12.
亚硝酸盐氮对生物除磷系统的影响   总被引:1,自引:0,他引:1  
为全面评价亚硝酸盐氮对生物除磷系统的影响,采用两个SBR系统,模拟厌氧/好氧及厌氧/缺氧(以硝酸盐氮为电子受体)除磷系统,分别考察亚硝酸氮对二者的影响.结果显示:亚硝酸盐氮对好氧除磷系统的影响远大于缺氧除磷系统,亚硝酸盐氮对好氧和缺氧除磷在每克挥发性悬浮固体加入0.88和6.72 mgNO 2--N时会对生物活性产生抑制.同时发现在以硝酸盐氮为电子受体的反硝化除磷基础上采用逐渐增加亚硝酸氮质量浓度的方法驯化聚磷污泥,可以增加污泥对亚硝酸盐氮的适应性,并最终可以选择亚硝酸氮作为唯一电子受体吸磷,但其除磷效率低于以氧和硝酸盐氮为电子受体的除磷系统.  相似文献   

13.
A2/O氧化沟工艺中NO3-对生物除磷影响   总被引:5,自引:0,他引:5  
为研究NO3-对生物除磷的影响,采用A2/O氧化沟中试对城市污水进行4个月的研究,并结合静态试验和实际A2/O氧化沟污水处理厂运行结果,研究NO3-对厌氧释磷影响,首次全面研究NO3-对二沉池释磷的影响.中试试验反应器总有效容积为375 L.结果表明,氧化沟出水ρ(NO3-)>5.0 mg/L时,回流污泥带入的NO3-较多,不利于磷的释放,TP去除率随出水NO3-的升高而降低;氧化沟出水ρ(NO3-)<5.0 mg/L时,NO3-较低导致在二沉池中进行了内碳源释磷反应,TP去除率随NO3-的降低而降低;静态试验结果证明当ρ(NO3-)>0.5 mg/L时,NO3-抑制磷的内碳源释放.NO3-降低至0.5 mg/L以下时,发生内碳源释磷,比内碳源释磷速率为0.18~0.47 mg/(gVSS.h);某污水处理厂运行结果也证明,二沉池污泥停留时间过长,发生内碳源释磷致使出水TP升高.  相似文献   

14.
以污水处理厂氧化沟污泥为泥种,采用进水低碳高磷、两阶段的运行方式进行反硝化聚磷污泥的培养,约100 d成功驯化培养出反硝化聚磷污泥.第1阶段以厌氧/好氧的运行方式驯化好氧聚磷污泥,运行约40 d,最大释磷量、最大聚磷量和最大除磷量分别可达到77.2、89.4、25.0 mg/L,表现出较强的聚磷能力;第2阶段采用厌氧/缺氧/好氧的运行方式驯化反硝化聚磷污泥,运行60 d,缺氧聚磷量占总聚磷量的百分比呈上升趋势.硝化污泥经过100 d的驯化可去除约50 mg/L的氨氮,硝化率基本稳定在98.5%以上.硝化速率本符合零级动力学方程,比硝化速率常数为0.0024h-1;好氧聚磷速率和缺氧聚磷速率基本符合一级动力学方程,速率常数分别是0.377、0.740 g/(L·h-1).利用驯化培养成功的反硝化聚磷污泥和硝化污泥进行了A2N-SBR试验,结果表明:在进水COD、氨氮和磷分别为188.0、54.8、7.25 mg/L时,去除率分别为93.5%、76.7%和94.1%,驯化培养的双污泥具有良好的脱氮除磷效果.  相似文献   

15.
以2种强化生物除磷(EBPR)系统中的活性污泥为研究对象,考察亚硝酸盐对聚磷菌厌氧代谢的影响,结果表明:不同EBPR系统中的聚磷菌对于亚硝酸盐的耐受能力不同.人工配水富集聚磷菌的活性污泥,当亚硝态氮浓度超过10 mg/L时,聚磷菌吸收VFA受到抑制,PHA的合成减少,磷酸盐的释放增加;处理生活污水的SBR短程脱氮除磷活性污泥,亚硝酸盐的浓度高达30 mg/L时,未对聚磷菌的厌氧代谢造成抑制,但引起异养反硝化菌与聚磷菌竞争VFA,导致PHA合成量和释磷量的减少.富集聚磷菌的活性污泥投加亚硝酸盐后P/VFA增大,说明有亚硝酸盐存在时更多的能量用于VFA的吸收.对2种活性污泥中聚磷菌的荧光原位杂交(FISH)定量分析表明:富集聚磷菌系统中聚磷菌含量达到55%,而短程脱氮除磷系统中为7.6%.  相似文献   

16.
通过实验室模拟的方法对化肥厂设备内部介质进行测定,分析其中主要腐蚀气体成分及浓度,为化工厂生产过程的改进提出依据,以减少腐蚀及提高化工生产的安全性.其结果表明:平均氯离子浓度分别为50.96 mg·L-1(D304-10、45.40 mg·L-1(D304-2)、56.72 mg·L-1(D305-1)和54.95 mg·L-1(D305-2),均超过了不锈钢不发生应力腐蚀开裂的Cl-极限含量10ppm的5倍、4.5倍、5.6倍和5.4倍.所以,致使化肥厂设备开裂的原因是Cl-在管道内局部富集发生点蚀,进而引发材料的应力腐蚀开裂.  相似文献   

17.
沿湖泊沉积物垂直高度取表层(SL,0~2cm)、中层(ML,14~16cm)、底层(BL,28~30cm)3层底泥微生物为对象,研究了湖泊沉积物对17β-雌二醇(17β-estradiol,E2)的生物降解效能。结果表明:无论在好氧还是厌氧条件下,E2及其副产物雌激素酮(estrone,E1)的降解行为与沉积物沉积深度和环境温度有密切关系:底泥沉积深度愈深,E2降解速率愈低;在微生物活性温度范围内,环境温度愈高,E2降解速率愈高。好氧条件下,湖泊沉积物中E2降解反应的k值为0.002~0.120h^-1·g^-1·L;厌氧条件下,k值为0.002~0.057h^-1·g^-1·L。由于诱导驯化及有机物竞争关系减小等原因,向反应体系中再次添加E2后,其k值增大约34%。湖泊沉积物中硝化细菌的存在对E2降解具有促进作用。  相似文献   

18.
利用3.2 L的厌氧膜生物反应器对产物为S0的自养反硝化工艺控制条件进行研究。实验中S/N比控制为2.5,氮负荷为0.07~0.08 kg·m-3·d-1时,分别研究HRT和pH值对底物去除以及单质硫积累的影响。反应器在进水硫化物浓度和NO3--N浓度分别为110和20 mg·L-1情况下运行,在pH值为7时,HRT分别为7.41和6.83 h时对NO3--N和硫化物的去除率基本无影响,分别为93%和100%,但对单质硫的积累有显著影响。HRT为6.83 h时,单质硫的积累率最大,为61%。pH为7.5、7、6.5和6时,对NO3--N和硫化物的去除率基本无影响,较低的pH(pH=7)有利于单质硫的积累,积累率可达62%左右,但进一步降低pH对单质硫积累率提高的帮助不大,仅能提高至65%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号