首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
如何兼顾冬夏两季建筑供暖空调负荷和能耗,保证室内热环境质量,确定最适宜的热工特性,是长期困扰中国南方建筑围护结构热工与节能设计的难点。通过对夏热冬冷和夏热冬暖地区建筑在采暖、空调与自然通风条件下动态热过程的分析,研究了这一地区围护结构热特性与能耗的制约关系,以及对室内热环境与建筑热稳定性的作用机理。在兼顾冬季保温与夏季隔热的情况下,将建筑全年能耗作为控制目标,从室内热环境质量、节能效果、围护结构的安全性、可靠性、经济性和实用性等角度评价目前所采用的围护结构节能技术存在的问题,提出一种适宜南方气候的建筑围护结构热特性指标及构造形式。  相似文献   

2.
《Energy and Buildings》2004,36(12):1227-1233
The purposes of this investigation are to look into the actual conditions of urban residential indoor environment in China during the winter season, and to discuss the thermal comfort as well as to understand the possibility of space heating energy conservation. Investigations of indoor thermal environment were carried out in Harbin, Beijing, Xi’an, Shanghai and Hong Kong of China. The results showed that the indoor thermal condition in heating usage zone is good, such as Harbin, Beijing and Xi’an. The indoor thermal comfort is strongly affected by the outdoor climate in non-heating usage zone, such as Shanghai and Hong Kong.  相似文献   

3.
对热舒适、空气感觉质量及能耗的模拟研究   总被引:5,自引:3,他引:5  
室内空调设计温度和新风量对热舒适,室内空气质量及能耗量有重要影响,然而对它们之间相互关系进行研究的文献却较少。通过计算机模拟空调系统在7种室内设计温度和7种新风量条件下的运行情况,得到不同的设计条件组合对热舒适、人体感觉空气质量及建筑能耗量的影响。基于这项分析,提出了此办公建筑合理的室内设计温度和新风量取值。  相似文献   

4.
The parametric study of the indoor environment of green buildings focuses on the quantitative and qualitative improvement of residential building construction in China and the achievement of indoor thermal comfort at a low level of energy use. This study examines the effect of the adaptive thermal comfort of indoor environment control in hot summer and cold winter (HSCW) zones. This work is based on a field study of the regional thermal assessment of two typical cases, the results of which are compared with simulated results of various scenarios of “energy efficiency” strategy and “healthy housing” environmental control. First, the simulated results show that the adaptive thermal comfort of indoor environment control is actually balanced in terms of occupancy, comfort, and energy efficiency. Second, adaptive thermal comfort control can save more energy for heating or cooling than other current healthy housing environmental controls in China's HSCW zone. Moreover, a large proportion of energy use is based on the subjective thermal comfort demand of occupants in any building type. Third, the building shape coefficient cannot dominate energy savings. The ratio of the superficial area of a building to the actual indoor floor area has a significant positive correlation with and affects the efficiency of building thermal performance.  相似文献   

5.
The shortcomings or limitations of the traditional approach to developing energy efficient buildings are that they can not determine: (1) the ideal thermophysical properties of building envelope material, where “ideal” means that such material can use ambient air temperature variation and/or solar radiation efficiently to keep the indoor air temperature in the thermal comfort range with no additional space heating or cooling; (2) the best natural ventilation strategy; (3) the minimal additional energy consumption for space heating in winter or air-conditioning in summer. To overcome these problems, some new concepts for developing energy efficient buildings are put forward in this paper. They are the ideal thermophysical properties of the building envelope material, the ideal natural ventilation rate, and a minimal additional space heating or cooling energy consumption. A new approach for determining these properties is also developed. In contrast to the traditional approach (the thermophysical properties of building envelope material are known and constant so that the relating equations describing the indoor air temperature tend to be linear differential equations), the new approach solves the inverse problem (thermophysical properties, etc. of a buildings are unknown), whose solution can be a function instead of a value. As a first step, the ideal specific heat of the building envelope material for internal thermal mass is analyzed for buildings located in various cities in different climatic regions of China, such as Beijing, Shanghai, Harbin, Urumchi, Lhasa, Kunming and Guangzhou. We found that the ideal specific heat is composed of a basic value and an excessive one which is of δ function for the cases studied. Some limitations that would need further study are introduced in the end of the paper.  相似文献   

6.
Sleep thermal environments substantially impact sleep quality. To study the sleep thermal environment and thermal comfort in China, this study carried out on-site monitoring of thermal environmental parameters in peoples’ homes, including 166 households in five climate zones, for one year. A questionnaire survey on sleep thermal comfort and adaptive behavior was also conducted. The results showed that the indoor temperature for sleep in northern China was more than 4°C higher than that in southern China in winter, while the indoor temperatures for sleep were similar in summer. Furthermore, 70% of people were satisfied with their sleep thermal environment. Due to the use of air conditioning and window opening in various areas in summer, people were satisfied with their sleep thermal environments. Due to the lack of central heating in the southern region in winter, people feel cold and their sleep thermal environment needs further improvement. The bedding insulation in summer and winter in northern China was 1.83clo and 2.67clo, respectively, and in southern China was 2.21clo and 3.17clo, respectively. Both northern China and southern China used air conditioning only in summer. People in southern China opened their windows all year, while those in northern China opened their windows during the summer and transitional periods.  相似文献   

7.
Minimizing energy consumption in buildings has become an important goal in architecture and urban planning in recent years. Guidelines were developed for each climatic zone aiming at increasing solar exposure for buildings in cold climates and at reducing solar exposure for buildings in hot climates. This approach usually plans for the season with the harshest weather; often forgetting that temperatures in cities at latitude 25° can drop below thermal comfort limits in winter and that temperatures in cities at latitude 48° often rise above thermal comfort limits in summer. This paper argues that a holistic approach to energy efficient building forms is needed. It demonstrates a generic energy efficient building form derived by cutting solar profiles in a conventional block. Results show that the proposed building form, the Residential Solar Block (RSB), can maximize solar energy falling on facades and minimize solar energy falling on roofs and on the ground surrounding buildings in an urban area in winter; thus maximizing the potential of passive utilization of solar energy. The RSB also supports strategies for mitigating the urban heat island through increased airflow between buildings, the promotion of marketable green roofs and the reduction of transportation energy.  相似文献   

8.
Indoor thermal environments and residents' control behavior of cooling and heating systems were investigated in Seoul, Korea and compared with the results of previous studies. Twenty-four houses in summer, six houses in autumn and 36 houses in winter were used in this study. The measurement of temperature, humidity and air conditioner usage behavior was carried out. The clo-value, thermal comfort, sensation and basic data of the houses were also investigated. The indoor thermal environment in the summer had a high temperature and a high humidity ratio compare to standard comfort zone. Most of the indoor thermal environments at the time of starting the air conditioner in the summer were out of the comfort zone. Some of the data recorded while the air conditioner was stopped were in the comfort zone, but in many cases the temperature was relatively higher than comfort zone. Most indoor climate distributions in the winter were in the comfort zone and the indoor climate in autumn coincided well with the criteria of the comfort zone. Compared with results of previous studies in these 25 years, indoor ambient average temperature in winter has increased and the comfort temperature has increased in the heating period and decreased in the cooling period. This result indicates that the development of an HVAC system has created an expectation of comfort for residents and has shifted their thermal comfort zone warmer in winter and cooler in summer.  相似文献   

9.
A two-storey rammed earth building was built on the Thurgoona Campus of Charles Sturt University in Albury-Wodonga, Australia, in 1999. The building is novel both in the use of materials and equipment for heating and cooling. The climate at Wodonga can be characterised as hot and dry, so the challenge of providing comfortable working conditions with minimal energy consumption is considerable. This paper describes an evaluation of the building in terms of measured thermal comfort and energy use. Measurements, confirmed by a staff questionnaire, found the building was too hot in summer and too cold in winter. Comparison with another office building in the same location found that the rammed earth building used more energy for heating. The thermal performance of three offices in the rammed earth building was investigated further using simulation to predict office temperatures. Comparisons were made with measurements made over typical weeks in summer and winter. The validated model has been used to investigate key building parameters and strategies to improve the thermal comfort and reduce energy consumption in the building. Simulations showed that improvements could be made by design and control strategy changes.  相似文献   

10.
简要介绍了气密性评价方式与被动房标准。从被动房的角度出发,建立了建筑模型,利用TRNSYS软件分析了在不采取供暖和制冷措施的情况下,3种不同围护结构工况下气密性的改变对室内温度影响。结果表明,在冬季,室内温度的升高趋势随气密性改善而递增;在夏季,不开窗时,气密性性能提高会提升室内温度,降低舒适度;采取夜间通风策略后,气密性对室内温度基本无影响。  相似文献   

11.
It is possible to evaluate the energy demand as well as the parameters related to indoor thermal comfort through building energy simulation tools. Since energy demand for heating and cooling is directly affected by the required level of thermal comfort, the investigation of the mutual relationship between thermal comfort and energy demand (and therefore operating costs) is of the foremost importance both to define the benchmarks for energy service contracts and to calibrate the energy labelling according to European Directive 2002/92/CE. The connection between indoor thermal comfort conditions and energy demand for both heating and cooling has been analyzed in this work with reference to a set of validation tests (office buildings) derived from a European draft standard. Once a range of required acceptable indoor operative temperatures had been fixed in accordance with Fanger's theory (e.g. −0.5 < PMV < −0.5), the effective hourly comfort conditions and the energy consumptions were estimated through dynamic simulations. The same approach was then used to quantify the energy demand when the range of acceptable indoor operative temperatures was fixed in accordance with de Dear's adaptive comfort theory.  相似文献   

12.
下送上回通风方式目前得到了广泛的研究应用,其供冷运行时就是置换通风,但同样一套通风系统在一些地区的寒冷季节则有可能需要作供暖运行.为了获得下送上回通风系统在分别作供冷与供暖运行时的具体性能参数,本文应用实验测试与计算流体力学(CFD)模拟的方法研究了置于环境实验室内的某办公环境.研究中分析比较了该办公环境内的空气速度、温度以及追踪气体污染物的浓度分布.研究结果表明,下送上回通风方式作供冷运行时空气温度及污染物浓度分层现象明显,空气处于半混合状态,置换效果较好;作供暖运行时,温度及污染物浓度趋于均匀,通风系统性能接近于混合送风系统,不具备良好的抑制交叉污染的能力.  相似文献   

13.
为了改善冬冷夏热地区冬季室内热环境恶劣的现状,通过对该地区的气候特点、居住建筑的形式和消费水平等因素进行综合分析研究,提出太阳能与电能互补供暖新方案。太阳能与电能互补供暖方案是将电能与太阳能有机结合在一起巧妙的应用于地热供暖系统中。该方案不仅可以有效改善冬冷夏热地区住宅的室内热环境,大大提高居民生活的舒适性。而且能够满足当前生态节能建筑的设计要求,并且灵活的实现了以户为单位的分散式采暖。  相似文献   

14.
Yaodong is one representative of western China vernacular dwellings. Its indoor thermal environment is cool in summer and warm in winter. This study interprets the characteristic of warm in winter and cool in summer in such a dwelling by measuring the indoor, outdoor and wall’s temperatures in winter and summer. The human thermal comfort theory is used to evaluate thermal environment, and the periodic heat transfer mechanism is used to analyze the thermal transfer through the wall. The results show that the Yaodong thick wall effectively damping external temperature wave and keeping steady inner surface temperature are the chief causes of warm in winter and cool in summer in Yaodong, which lays a scientific basis for low energy building design.  相似文献   

15.
Different types of heating, ventilation, and air-conditioning (HVAC) systems consume different amounts of energy yet they deliver similar levels of acceptable indoor air quality (IAQ) and thermal comfort. It is desirable to provide buildings with an optimal HVAC system to create the best IAQ and thermal comfort with minimum energy consumption. In this paper, a combined system of chilled ceiling, displacement ventilation and desiccant dehumidification is designed and applied for space conditioning in a hot and humid climate. IAQ, thermal comfort, and energy saving potential of the combined system are estimated using a mathematical model of the system described in this paper. To confirm the feasibility of the combined system in a hot and humid climate, like China, and to evaluate the system performance, the mathematical model simulates an office building in Beijing and estimates IAQ, thermal comfort and energy consumption. We conclude that in comparison with a conventional all-air system the combined system saves 8.2% of total primary energy consumption in addition to achieving better IAQ and thermal comfort. Chilled ceiling, displacement ventilation and desiccant dehumidification respond consistently to cooling source demand and complement each other on indoor comfort and air quality. It is feasible to combine the three technologies for space conditioning of office building in a hot and humid climate.  相似文献   

16.
Maintaining suitable indoor climate conditions is a need for the occupants’ well being, while requiring very strictly thermal comfort conditions and very high levels of indoor air quality in buildings represents also a high expense of energy, with its consequence in terms of environmental impact and cost. In fact, it is well known that the indoor environmental quality (IEQ), considering both thermal and indoor air quality aspects, has a primary impact not only on the perceived human comfort, but also on the building energy consumption. This issue is clearly expressed by the European Energy Performance of Buildings Directive 2002/92/EC, together with the most recent 2010/31/EU, which underlines that the expression of a judgment about the energy consumption of a building should be always joint with the corresponding indoor environmental quality level required by occupants. To this aim, the concept of indoor environment categories has been introduced in the EN 15251 standard. These categories range from I to III, where category I refers to the highest level of indoor climate requirement. In the challenge of reducing the environmental impact for air conditioning in buildings, it is essential that IEQ requirements are relaxed in order to widen the variations of the temperature ranges and ventilation air flow rates. In this paper, by means of building energy simulation, the heating and cooling energy demand are calculated for a mechanically controlled office building where different indoor environmental quality levels are required, ranging from category I to category III of EN 15251. The building is located in different European cities (Moscow, Torino and Athens), characterized by significantly different wheatear conditions. The mutual relation between heating and cooling energy demand and the required levels of IEQ is highlighted. The simulations are performed on a typical office room which is adopted as a reference in validation tests of the European Standard EN 15265 to validate calculation procedures of energy use for space heating and cooling.  相似文献   

17.
为了明晰长江流域住宅居民采用分体式空调供暖供冷的行为特性,选取了4个典型城市的19户住户(均为新建住宅小区,家庭结构相似,采用一级能效房间空调器),对其空调房间全年温湿度和耗电量进行了连续一年的监测.结果 显示:住户采用空调供暖多集中在12月,夏季供冷集中在7月中下旬至8月中上旬,空调开启比例高于50%,且多发生在20...  相似文献   

18.
单明  李定凯  杨旭东 《建筑科学》2011,27(6):10-14,29
在我国南方和西南长江流域地区,冬季农村住宅的室内空气质量和热舒适性较差,需要在节能减排的总体思路下予以合理解决.本文基于对这一地区农宅建筑形式特点和农民生活习惯的调研分析,提出了主要依靠辐射方式进行局部供暖的思路,以解决该地区冬季室内热舒适性差的问题.同时,为了避免生物质在火盆、火塘等传统供暖设施内直接燃烧所造成的室内...  相似文献   

19.
周丽 《城市建筑》2014,(2):217-217
武汉地区建筑围护结构的保温隔热性能差,致使冬夏季节空调制冷制热能耗高。采用双层玻璃幕墙可降低武汉地区的建筑能耗,提高建筑室内热环境的舒适度,将给武汉地区带来巨大的经济效益和社会效益。  相似文献   

20.
通过对西安地区某覆土建筑冬季室内热环境的测试,分析了测试房与对比房的温度测试数据。结果表明测试房内各测点逐时温度均高于对比房,室内温度变化幅度也明显小于对比房,且覆土建筑的室内温度略高于当地室内设计采暖温度。在测试的基础上采用主观温度法对室内热舒适性进行参考性评价,结果显示测试房室内热环境较好地满足了使用者对热舒适的需求。因此,覆土建筑在冬季能够有效维持室内温度,提高热舒适性,同时能够降低建筑采暖能耗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号