首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon-rich soils, like histosols or gelisols, cover more than 3% of the Earth's land surface, and store roughly three times more carbon than the Earth's forests. Carbon-rich soils are reactive porous materials, prone to smouldering combustion if the inert and moisture contents are low enough. An example of soil combustion happens in peatlands, where smouldering wildfires are common in both boreal and tropical regions. This work focuses on understanding soil ignition by self-heating, which is due to spontaneous exothermic reactions in the presence of oxygen under certain thermal conditions. We investigate the effect of soil inorganic content by creating under controlled conditions soil samples with inorganic content (IC) ranging from 3% to 86% of dry weight: we use sand as a surrogate of inorganic matter and peat as a surrogate of organic matter. This range is very wide and covers all IC values of known carbon-rich soils on Earth. The experimental results show that self-heating ignition in different soil types is possible, even with the 86% inorganic content, but the tendency to ignite decreases quickly with increasing IC. We report a clear increase in ambient temperature required for ignition as the IC increases. Combining results from 39 thermostatically-controlled oven experiments, totalling 401 h of heating time, with the Frank-Kamenetskii theory of ignition, the lumped chemical kinetic and thermal parameters are determined. We then use these parameters to upscale the laboratory experiments to soil layers of different thicknesses for a range of ambient temperatures ranging from 0 °C to 40 °C. The analysis predicts the critical soil layer thicknesses in nature for self-ignition at various possible environmental temperatures. For example, at 40 °C a soil layer of 3% inorganic content can be ignited through self-heating if it is thicker than 8.8 m, but at 86% IC the layer has to be 1.8 km thick, which is impossible to find in nature. We estimate that the critical IC for a ambient temperature of 40 °C and soil thickness of 50 m is 68%. Because those are extreme values of temperature and thickness, no self-heating ignition of soil can be expected above the 68% threshold of inorganic content. This is the first in-depth experimental quantification of soil self-heating and shows that indeed it is possible that wildfires are initiated by self-heating in some soil types and conditions.  相似文献   

2.
《Fire Safety Journal》2001,36(7):693-710
The distribution of explosion damage in a structure is a major indicator of the type of explosive material involved and its location. A solid-phase explosive material typically produces localized or “seated” damage, where a vapor/air explosive mixture typically produces generalized, omnidirectional damage. Investigators have been taught that the finding of more intense blast damage to lower portions of an enclosure indicates that the vapors were heavier than air, while explosion damage to upper portions indicates a lighter-than-air gaseous fuel. Most of the explosion pressure data in the literature deal with well-mixed mixtures that are uniform in concentration prior to ignition. This study explores the pressure distributions produced by the ignition of shallow (0.05–0.2 m deep) layers of hexane vapor created by the evaporation of liquid in a still, isothermal compartment. The floor-level vapor layers thus produced were ignited by an electric arc and the pressures at five different locations in the room were monitored. It was found that pressures increased in an exponential fashion over a period of 300–400 ms after ignition until the relief panel failed (at ∼5–6 kPa). The peak pressures observed at all five locations in the compartment coincided in time (to within ±5 ms) and intensity suggesting that the pressures produced within the 3.6 m×2.4 m×2.4 m chamber equilibrated very quickly. Any failure of the compartment, then, would be the result of failure of the weakest part of the confining structure, rather than the result of pre-ignition distribution of the fuel/air mixture. A small (∼−2 kPa), but reproducible negative pressure peak was observed some 60–70 ms after the maximum positive pressure. This finding shows that negative pressure peaks can be produced by deflagrating vapor/air mixtures that could exert physical effects on lightweight debris dislodged by the initial positive pulse.  相似文献   

3.
In this study, empirical formulae previously derived for describing the decrease in temperature rise, the decrease in velocity, the thermal boundary layer thickness, the momentum boundary layer thickness, the Gaussian thermal thickness, and the Gaussian momentum thickness of a ceiling jet flowing upward along the steepest run of an inclined ceiling were applied to a full-scale scenario. The coefficients in these formulae were determined through a series of pool fire tests conducted using a flat, unconfined model ceiling with dimensions of 2.5 m×3.0 m, and fixed ceiling clearance of 1.0 m. To verify the applicability of the developed formulae to actual fires, another series of pool fire tests were conducted using a flat, unconfined full-scale ceiling with dimensions of 7.0 m×14.0 m and a maximum ceiling clearance of 3.0 m. The proposed formulae were confirmed to be applicable to a full-scale scenario and to describe the ceiling jet flow accurately.  相似文献   

4.
A flux chamber was designed to measure the transient fuel transport through a foam layer before significant degradation of foam occurred. The fuel transport rate through AFFF (fluorinated foam) was much slower than through RF6 (fluorine-free foam) with break-through times being 820 s and 276 s respectively over n-heptane. The fuel flux through AFFF covering three fuel pools (n-heptane, iso-octane, and methyl-cyclohexane) was also measured. AFFF had the smallest flux over iso-octane with a break-through time over 1900 s and the highest flux over methyl-cyclohexane with a break-through time under 80 s even though the fuels have similar vapor pressures at room temperature. Despite the lack of aqueous film formation on an iso-octane fuel pool, the fuel vapor flux through AFFF was much smaller relative to the methyl-cyclohexane pool, which enables film formation due to its higher surface tension than iso-octane. Our measurements of transient fuel flux show that the foam layer is a significant barrier to fuel vapor transport. The data suggest a transient mechanism based on the suppression of fuel adsorption onto bubble lamellae surfaces due to the oleophobicity of fluorocarbon surfactants, which is consistent with fuel solubility data. This suggests that surfactants that suppress fuel adsorption and solubility into bubble lamellae surfaces may reduce fuel transport through foams.  相似文献   

5.
The efficiency of a firebreak, built in a shrubland has been studied numerically using a multiphase physical model. The physical mechanisms governing the propagation of the surface fire and the consequences upon the temperature signal and the radiative heat flux received by a target located at 1 m above the ground level, have been firstly studied before positioning the firebreak. The role played by the flame and the recirculation of hot gases to the ignition of unburned fuel (especially the dry grass) ahead of the fire front have been clearly identified. Four values of the firebreak width LC (ranged between 5 and 20 m) and 3 values of wind velocities (ranged between 1 and 8 m/s) have been tested. The simulations show that above a threshold value of this parameter, even if a small amount of the fuel located on the opposite side of the firebreak was ignited, the released energy was not sufficient to sustain the propagation of the surface fire after crossing the firebreak.  相似文献   

6.
Spill fire experiments with continuous discharge on a fireproof glass sheet were conducted to improve the understanding of spill fire spread and burning. Ethanol was used as the fuel and the discharge rate was varied from 2.8 mL/s to 7.6 mL/s. Three ignition conditions were used in the experiments; no ignition, instantaneous ignition and delayed ignition. The spread rate, regression rate, penetrated thermal radiation and the temperature of the bottom glass were analyzed. The experiments clearly show the entire spread process for spill fires. Further, the regression rate of spill fires at the quasi-steady burning was lower than that of pool fires and the ratio of the spill fires’ regression rate to the pool fires’ regression rate was found to be approximately 0.89. With respect to the radiative penetration and the heat conduction between the fuel layer and the glass, a regression rate expression for spill fires was developed based on some modifications on existing expressions for pool fires. In addition, a complete phenomenological model for spill fires was developed by combining the characteristics of spread and burning. The model was verified by the experimental data and found to predict the spread process for spill fires with reasonable accuracy.  相似文献   

7.
A set of experiments was carried out in a 1/9 reduced-scale single-track railway tunnel to investigate the effect of fuel area size on the temperature distribution and behavior of fires in a tunnel with natural ventilation. Methanol pool fires with four different fuel areas 0.6 × 0.3 m2 (1 pan), 1.2 × 0.3 m2 (2 pans), 2.4 × 0.3 m2 (4 pans) and 3.6 × 0.3 m2 (6 pans), were used in these experiments. Data were collected on temperatures, radiative heat flux and mass loss rates. The temperature distribution and smoke layer in the tunnel, along with overflow dimensions and radiant heat at the tunnel entrance were analyzed. The results show that as the fuel area enlarges, the fire gradually becomes ventilation-controlled and the ceiling temperature over the center of fire source declines. Burning at the central region of fire source is depressed due to lack of oxygen. This makes the temperature distribution along the tunnel ceiling change from a typical inverted V-shape to an M-shape. As observed in the experiments, a jet flame appeared at tunnel entrances and both the size and temperature of the flame increased with the enlargement of fuel area leading to a great threat to firefighters and evacuees in actual tunnel fires.  相似文献   

8.
Upward flame spread experiments were conducted on long thin composite fabric fuels made of 75% cotton and 25% fiberglass of various widths between 2 and 8.8 cm and lengths greater than 1.5 m. Symmetric ignition at the bottom edge of the fuel resulted in two sided upward flame growth initially. As flame grew to a critical length (15–30 cm depending on sample width) fluctuation or instability of the flame base was observed. For samples 5 cm or less in width, this instability lead to flame blow off on one side of the sample (can be either side in repeated tests). The remaining flame on the other side would quickly shrink in length and spread all the way to the end of the sample with a constant limiting length and steady spread rate. Flame blow off from the increased buoyancy induced air velocity (at the flame base) with increasing flame length is proposed as the mechanism for this interesting phenomenon. Experimental details and the proposed explanation, including sample width effect, are offered in the paper.  相似文献   

9.
This study was performed to determine the abrasion resistances of some varnishes used on wood materials. For this purpose, test samples prepared from Scots pine, Oriental beech, European oak, Black poplar, Basswood and Black walnut woods, which met the requirements of ASTM D 358, were coated according to ASTM D 3023 standards with cellulosic (C), synthetic (Sn), polyurethane (Pu), waterborne (Wb) and acidhardening (Ah) varnishes. The abrasion resistance of samples after the varnishing process was determined in accordance with TS 4755. It was observed that, according to wood samples, the highest abrasion resistance was obtained in Black walnut (168.9 rpm), and the lowest abrasion resistance was obtained in Scots pine (50.63 rpm); according to varnish types, the highest abrasion resistance was obtained in acidhardening (213.4 rpm), and the lowest abrasion resistance was obtained in waterborne (45.44 rpm). In accordance with the interaction of the factors wood type, varnish type and layer type, the highest abrasion resistance was found at interaction of Black walnut + acidhardening + 3 layers (578.0 rpm), and the lowest abrasion resistance was found at interaction of Oriental beech + waterborne + 1 layer (11.50 rpm). Furthermore, it was found that interactions according to the varnish type and amount of layer thickness display differences; varnish types are efficient to the first degree and layer thickness to the second degree for abrasion resistance. In this respect, it can be stated that in wooden parquets and place floorings, in which the abrasion resistance is considerably important, the varnish application with three layers of acidhardening can provide an advantage.  相似文献   

10.
This paper describes the development of a laboratory-based automatic torque bond test that is capable of quasi-static and repeated load interface testing. Results from quasi-static testing undertaken using either a controlled torque rate or a controlled rotation rate showed that the shear strengths and shear reaction moduli increased as the temperature decreased. Samples with interfaces treated with the cationic emulsion were found to display the highest shear strengths and those treated with no emulsion were found to display the lowest shear strengths. A reasonably good correlation was found between results from testing performed at 600 N m/min and testing performed at 180°/min. The nominal shear strength measured from a test performed at 180°/min was found to be approximately 1.9 times higher than the nominal shear strength measured from a test performed at 600 N m/min. The nominal shear reaction modulus from a test performed at 180°/min was found to be approximately 1.6 times higher than the nominal shear reaction modulus from the test performed at 600 N m/min. The effect of material compliance above and below the interface on the rotation of the interface and shear reaction modulus of the interface is likely to be relatively small unless the shear stiffness of these materials is very low and/or the thickness is large. Results from repeated load (fatigue) testing showed a higher fatigue life and greater sensitivity to shear stress level at the lower temperature.  相似文献   

11.
A series of fire tests was conducted in a 10.0 m (L) × 0.75 m (W) × 0.45 m (H) model tunnel with a rectangular cross section, and detailed measurements were taken of the temperature and velocity within a quasi-steady state fire-driven ceiling-jet running along the centre of a ceiling.The ceiling-jet thickness was defined as the distance from the tunnel ceiling to the point where the temperature and/or velocity dropped to half of their maximums. Correlations to represent the variation in the ceiling-jet thickness along the tunnel axis were developed with the aid of a theoretical approach. The coefficients included in these correlations were determined based on the experimental results obtained. It was found that the ceiling-jet thickness derived from the temperature was 1.17 times greater than that from the velocity in the tranquil flow region.In the tranquil region, both the velocity and temperature showed top-hat distributions, with a bulging shape from the apex of the distribution towards the tunnel floor. A cubic function and coordinate transformation were applied to develop empirical formulae for the temperature and velocity distributions, which were represented by the dimensionless distance from the tunnel ceiling and dimensionless temperature rise and/or velocity at a given distance from the fire source. The correlation developed for the temperature distribution was compared with the results of large- and full-scale tunnel experiments, which verified its applicability.  相似文献   

12.
《Energy and Buildings》2001,33(6):569-581
At the present time, thermal insulation is almost not used in fabric of tall residential buildings in Hong Kong, as their fabric slabs usually comprise concrete layer covered on each side by plaster layers. This study investigates into the influence of an existence of the thermal insulation layer in the outside walls on the yearly cooling load and yearly maximum cooling demand in two typical residential flats in a high-rise residential building by employing HTB2, detailed building heat transfer simulation software. During the investigations, the thermal insulation layer up to 15 cm thick was placed either at the inside, or at the outside, or at the middle part of the outside wall structure. Then, the concrete layer was up to 40 cm thick. The simulation predictions indicate that the highest decrease in the yearly cooling load of up to 6.8% is obtained when a 5 cm thick thermal insulation layer faces the inside of the residential flat. The highest decrease in the yearly maximum cooling demand of 7.3% is recorded when a 5 cm thermal insulation layer faces either the outside or the inside of the flat; this depends on the flat orientation. However, much weaker reductions in the yearly cooling load and yearly maximum cooling demand are found when the thickness of thermal insulation is increased above 5 cm and the thickness of concrete is increased above 10 cm.  相似文献   

13.
This study aimed at investigating the role of ultra fine sand (UFS) in enhancing the mechanical and acoustic properties of cementitious pastes. The microstructural origin of these properties was also identified and compared to the conventional materials. The maximum particle size of the UFS used was 100 μm (100% passing) while 50% of the UFS had less than 20 μm in diameter. Ordinary Portland cement (OPC) was partially substituted by UFS at 1%, 2%, 3%, 4%, 5%, 7.5% and 10% by weight of binder. The blended compounds were prepared using the standard water of consistency. Test samples with dimension of 20 × 20 × 20 mm and 40 × 40 × 160 mm were cast for compression and bending strengths tests, respectively. Circular samples with diameters of about 100 and 29 mm and average thickness of about 30 mm were used for sound absorption tests. All samples were kept in molds for 24 h, and then de-molded and allowed to cure in water for 28 days. The specimens were dried at a temperature of 105 °C for 24 h in an oven before testing. It was found that as the loading of UFS increases both the compressive and bending strength increase up to about 5% UFS loading, then a decrease in these properties was observed. This can be attributed to the pozzolanic effect of UFS resulting in enhancing the chemical reaction between free lime in cement and silica producing more hydration products that makes the paste more homogeneous and dense. In addition, the dispersed UFS has improved the filling effect allowing denser packing of the paste. These dense microstructural features were captured by scanning electron microscope (SEM) examination of the 5% UFS modified compound. The results also showed that, the sound absorption and noise reduction coefficient (NRC) for modified cement paste decreases with the increase of UFS up to 5% and this may be due to the decrease in porosity. However, the NRC began to increase at UFS loadings of 7.5% and 10% due to the increase in the porosity of the compounds.  相似文献   

14.
《Soils and Foundations》2014,54(4):621-638
The collapse of a filling occurred due to heavy rain in Higashi-Hiroshima City׳s Shiwa District at about 5:30 am July 25th, 2009. The filling was made of surplus soils, and it contained a mass of water supplied from rainfall and ground water flow of a permeable layer at the bottom of the filling. The collapsed soil flowed down and destroyed a house. In this paper, the cause of this disaster is discussed. The site of the disaster was used as the dumping site of surplus soils, after several changes of ground formation. The history of the geographical change was reconstructed by the image processing of old map, aerial photographs, result of 3-dimentional laser survey carried out after collapse and the measurement of thickness of collapsed soil by dynamic cone penetration test. According to the result of processing, the shape and the size of the filling before collapse was reconstructed. The relationship between the rainfall and the groundwater in the river sediments layer over which the filling was constructed was determined. A stability analysis of the filling was conducted considering the rise of the groundwater level in the filling and the laboratory measured strength parameters. The results of the stability analysis showed that the collapse would have taken place when the groundwater level rose by about 9 m due to the supply of groundwater through the river sediments layer.  相似文献   

15.
A set of experiments was carried out to determine the flammability limits (FL) of blends of iso-butanol and a surrogate fuel for gasoline at 154±11 °C and ≈91.4 kPa. The surrogate gasoline was a binary PRF mixture of 87% iso-octane and 13% n-heptane (PRF 87). The volumetric fraction of iso-butanol in the liquid fuel was varied from 0 to 0.25 at a step of 0.05. Flammability tests with pure fuels were also performed to confirm the reliability of the applied experimental procedure. The homogeneous air/fuel mixtures were defined as flammable when formed a self-sustained flame able to travel upward a 0.3 m long open combustion tube. The lower FL of the blends of iso-butanol and PRF 87 (0.80−0.98%) were estimated correctly with the mixing rule of Le Chatelier, but the same simplified model failed to reproduce the measured upper flammability limits (5.10−5.61%).  相似文献   

16.
《Energy and Buildings》2005,37(10):1007-1016
Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such “cool” roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a four-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas.Results showed that installing a cool roof reduced the daily peak roof surface temperature of each building by 33–42 K. In the retail store building in Sacramento, for the monitored period of 8 August–30 September 2002, the estimated savings in average air conditioning energy use was about 72 Wh/m2/day (52%). On hot days when the afternoon temperature exceeded 38 °C, the measured savings in average peak demand for peak hours (noon–5 p.m.) was about 10 W/m2 of conditioned area. In the school building in San Marcos, for the monitored period of 8 July–20 August 2002, the estimated savings in average air conditioning energy use was about 42–48 Wh/m2/day (17–18%). On hot days, when the afternoon temperature exceeded 32 °C, the measured savings in average peak demand for hours 10 a.m.–4 p.m. was about 5 W/m2 of conditioned area. In the cold storage facility in Reedley, for the monitored period of 11 July–14 September 2002, and 11 July–18 August 2003, the estimated savings in average chiller energy use was about 57–81 Wh/m2/day (3–4%). On hot days when the afternoon temperature exceeded 38 °C, the measured savings in average peak-period demand (average cooling-power demand during peak demand hours, typically noon–6 p.m.) was about 5–6 W/m2 of conditioned area.Using the measured data and calibrated simulations, we estimated savings for similar buildings installing cool roofs in retrofit applications for all 16 California climate zones. For similar retail stores in climate zones 2 and 4–16, installing a cool roof can save about 6–15 kWh/m2/year of conditioned area. In climate zones 2–16, estimates of average peak demand savings for hours noon–5 p.m. range from 2.9 to 5.8 W/m2. For similar school buildings in climate zones 2–16, installing a cool roof can save from 3 to 6 kWh/m2/year of conditioned roof area. For all 16 climate zones estimates of average peak demand savings for hours noon–5 p.m. range from 2.6 to 3.8 W/m2. In similar cold storage buildings in all 16 climate zones, installing a cool roof can save about 4.5–7.4 kWh/m2/year of conditioned roof area. In all 16 climate zones, estimates of average peak demand savings for hours noon–5 p.m. range from 3.9 to 6.6 W/m2.  相似文献   

17.
Fire suppression with water spray was investigated, focusing on cases where fuel cooling is the dominant suppression mechanism, with the aim to add a specific suppression model addressing this mechanism in Fire Dynamics Simulator (FDS), which already involves a suppression model addressing effects related to flame cooling. A series of experiments was selected, involving round pools of either 25 or 35 cm diameter and using both diesel and fuel oil, in a well-ventilated room. The fire suppression system is designed with four nozzles delivering a total flow rate of 25 l/min and injecting droplets with mean Sauter diameter 112 μm. Among the 74 tests conducted in various conditions, 12 cases with early spray activation were especially considered, as suppression was observed to require a longer time to cool the fuel surface below the ignition temperature. This was quantified with fuel surface temperature measurements and flame video recordings in particular. A model was introduced simulating the reduction of the pyrolysis rate during the water spray application, in relation to the decrease of the fuel local temperature. The numerical implementation uses the free-burn step of the fire to identify the relationship between pyrolysis rate and fuel surface temperature, assuming that the same relationship is kept during the fire suppression step. As expected, numerical simulations reproduced a sharp HRR decrease following the spray activation in all tests and the suppression was predicted in all cases where it was observed experimentally. One specific case involving a water flow rate reduced such that it is too weak to allow complete suppression was successfully simulated. Indeed, the simulation showed a reduced HRR but a fire not yet suppressed. However, most of the tests showed an under-estimated duration before fire suppression (discrepancy up to 26 s for a spray activation lasting 73 s), which demonstrates the need for model improvement. In particular the simulation of the surface temperature should require a dedicated attention. Finally, when spray activation occurred in hotter environments, probably requiring a combination of fuel cooling and flame cooling effects, fire suppression was predicted but with an over-estimated duration. These results show the need for further modeling efforts to combine in a satisfactory manner the flame cooling model of FDS and the present suggested model for fuel cooling.  相似文献   

18.
Rana Gruber AS is an iron mining company in the North of Norway, and it operates Kvannevann mine 30 km east of Mo i Rana. The Kvannevann mine is located in a foliated gneiss host rock, with an ore body about 70 m wide and more than 300 m deep. The mine has been in operation for many years using sublevel stoping, and is now changing to sublevel caving. Experience from past mining activity in the infrastructure preparation for the new mining method indicates that the mine is located in a hard, brittle rock mass with high horizontal stresses. Stress measurements have been made from time to time. The measurement results indicate a major principal stress of 20 MPa perpendiculars to the strike of the ore, and a minor principal stress of 10 MPa parallel to the strike of the ore, which is 10–15 times higher than the theoretical vertical stress caused by gravity at the measured location. In addition to the high horizontal stress, lessons learned regarding failure and rock support during the underground excavation need to be considered for designing and excavating a new canteen room (B × H = 9 × 8 m) at the mine. Numerical modelling is utilised to be able to include all of the adverse conditions for consideration.  相似文献   

19.
The grouting results for a tunnel at a depth of 450 m in crystalline rock at Äspö HRL were studied. The aims were to investigate whether the methodology used resulted in a successful grouting design and producing a sufficiently dry tunnel, and whether grout penetration and inflow into the finished tunnel corresponded to the predictions. An analysis was made of data from an original cored borehole, drilled before the tunnel was constructed and mapped thoroughly with regard to fractures and transmissivities. The predicted inflow into the tunnel was calculated and found to be four times higher than the measured inflow. The latter was 5 l/min along the 70 m tunnel, considered to be a good result at the current depth. New cored control boreholes were drilled along a section of the tunnel. The inflow positions and quantities in these holes, and the positions of grout found in the corresponding cores, were compared with the data from the original borehole. It was found that at the predicted positions of larger fractures, grout was observed and there was no inflow, showing that these had been successfully sealed. At the predicted positions of small fractures, no grout was visible in the cores, and small inflows showed that the grout had not sealed these fractures. The results indicated that cement-based grout successfully sealed fractures down to a hydraulic aperture of about 50 μm but not below 30 μm. This concurs with the initial design aimed at sealing fractures larger than 50 μm.  相似文献   

20.
《Energy and Buildings》2005,37(8):890-896
This paper reports experimental data for forced convection heat transfer in a heat exchanger, which is a key part of the underfloor distribution system. The experiments were performed to study heat transfer and pressure drop characteristics of tested units with different geometry of flow ducts. The heat exchanger was made of Plexiglas and PVC. The top side of plastic exchanger was covered by a layer of a concrete screed with thickness of 0.035 m. The bottom side was insulated with 0.1 m of polystyrene. The length of the tested units was 1 m and the width 0.5 m. The fluid in the heat exchanger was air. The results of experimental study were presented in a dimensionless form. The average Nusselt number and Fanning friction factor were expressed in terms of the Reynolds number. The experimental results presented in this paper provide useful information for designing of an underfloor air distribution system in the residential housing sector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号