首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of power sources》2006,162(1):738-742
Carbon aerogels have been prepared through a polycondensation of cresol (Cm) with formaldehyde (F) and an ambient pressure drying followed by carbonization at 900 °C. Modification of the porous structures of the carbon aerogel can be achieved by CO2 activation at various temperatures (800, 850, 900 °C) for 1–3 h. This process could be considered as an alternative economic route to the classic RF gels synthesis. The obtained carbon aerogels have been attempted as electrode materials in electric double-layer capacitors. The relevant electrochemical behaviors were characterized by constant current charge–discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy in an electrolyte of 30% KOH aqueous solution. The results indicate that a mass specific capacitance of up to 78 F g−1 for the non-activated aerogel can be obtained at current density 1 mA cm−2. CO2 activation can effectively improve the specific capacitance of the carbon aerogel. After CO2 activation performed at 900 °C for 2 h, the specific capacitance increases to 146 F g−1 at the same current. Only a slight decrease in capacitance, from 146 to 131 F g−1, was observed when the current density increases from 1 to 20 mA cm−2, indicating a stable electrochemical property of carbon aerogel electrodes in 30% KOH aqueous electrolyte with various currents.  相似文献   

2.
《Journal of power sources》2006,153(1):191-196
A nano-structured CoAl double hydroxide with an average particle size of 60–70 nm was prepared by a chemical co-precipitation. It was used as a positive electrode for the asymmetric hybrid supercapacitor in combination with an active carbon negative electrode in KOH electrolyte solution. The electrochemical capacitance performance of this kind of hybrid supercapacitor was investigated by means of cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge–discharge tests. A specific capacitance of 77 F g−1 with a specific energy density of 15.5 wh kg−1 was obtained for the hybrid supercapacitor within the voltage range of 0.9–1.5 V. The supercapacitor also exhibits a good cycling performance and keep 90% of initial capacity over 1000 cycles.  相似文献   

3.
《Journal of power sources》2006,157(1):621-623
A carbon aerogel supercapacitor has been fabricated with an alkaline polymer gel electrolyte. The electrolyte, which also acts as a separator, has a thickness of 3 mm and a conductivity of around 10−2 S cm−1 at room temperature. The capacitor is characterized by means of cyclic voltammetry, impedance spectroscopy, and galvanostatic cycling. A specific capacitance of 9 F g−1 is shown by cyclic voltammetry.  相似文献   

4.
《Journal of power sources》2002,110(1):233-236
Composite electrodes which comprise a non-conductive activated carbon of large surface area (1420 m2 g−1) and a conductive carbon black (CB) of small surface area (220 m2 g−1) have been prepared and studied for their capacitive properties in aqueous KOH and Na2SO4 electrolytes. For either electrolyte, maximum capacitance exists at the composition believed to correspond to the percolation threshold for CB, the conductive phase. At a CB content less than the threshold, the capacitance is limited mainly by the electronic resistance on the electrode side. The interfacial surface area becomes the limiting factor as the threshold is exceeded. A maximum capacitance of 108 F g−1 at a voltage sweep rate of 20 mV s−1 is obtained in 1 M KOH aqueous electrolyte with a CB content of 25 wt.% (or ∼14 vol.%).  相似文献   

5.
《Journal of power sources》2002,103(2):305-309
Polyaniline doped with HCl (Pani-HCl) and LiPF6 (Pani-LiPF6) are prepared and used as the active electrode material of symmetric redox supercapacitors. The system using Et4NBF4 as an electrolyte solution has lower internal resistance and larger specific discharge capacitance, and thus, it is suitable for use in a polyaniline redox supercapacitor. The capacitance of Pani-HCl decreases during ∼400 cycles and then becomes constant at ∼40 F g−1. On the other hand, the polyaniline electrode doped with lithium salt like LiPF6 shows a specific discharge capacitance of ∼107 F g−1 initially and ∼84 F g−1 at 9000 cycles.  相似文献   

6.
《Journal of power sources》2004,134(1):148-152
Thin-film ruthenium oxide electrodes are prepared by cathodic electrodeposition on a titanium substrate. Different deposition periods are used to obtain different film thicknesses. The electrodes are used to form a supercapacitor with a 0.5 M H2SO4 electrolyte. The specific capacitance and charge–discharge periods are found to be dependent on the electrode thickness. A maximum specific capacitance of 788 F g−1 is achieved with an electrode thickness of 0.0014 g cm−2. These results are explained by considering the morphological changes that take place with increasing film thickness.  相似文献   

7.
A Sb (6 mol%)-doped SnO2 xerogel impregnated with RuO2 nanocrystallites is prepared via an incipient-wetness method and is optimized for its electrochemical capacitance in aqueous 1 M KOH electrolyte by adjusting the calcination temperature and the RuO2 loading. The electrode capacitance does not increase monotonically with increasing RuO2 loading. A maximum electrode capacitance of 15 F g−1, which represents a three-fold increase compared with the blank xerogel and a specific RuO2 capacitance of 710 F g−1 RuO2, is obtained with a RuO2 loading of 1.4 wt.% and by calcination at 200 °C. Higher loadings presumably result in a homogeneous nucleation upon drying, which causes severe reduction in the total surface area of the RuO2 crystallites.  相似文献   

8.
《Journal of power sources》2005,141(1):198-203
The relationship between the structure-specific capacitance (F g−1) of a composite electrode consisting of activated coconut-shell carbon and hydrous ruthenium oxide (RuOx(OH)y) has been evaluated by impregnating various amounts of RuOx(OH)y into activated carbon that is specially prepared with optimum pore-size distribution. The composite electrode shows an enhanced specific capacitance of 250 F g−1 in 1 M H2SO4 with 9 wt.% ruthenium incorporated. Chemical and structural characterization of the composites reveals a homogeneous distribution of amorphous RuOx(OH)y throughout the porous network of the activated carbon. Electrochemical characterization indicates an almost linear dependence of capacitance on the amount of ruthenium owing to its pseudocapacitive nature.  相似文献   

9.
《Journal of power sources》2006,162(2):1437-1443
MnFe2O4–carbon black (CB) composite powders synthesized by a co-precipitation method have been characterized and optimized for their electrochemical properties for supercapacitor applications. The composite shows pseudocapacitance in electrolyte solutions of alkali and alkaline chlorides, sulfates and sulfites. For the chlorides and sulfates electrolytes, the pseudocapacitance has been identified, by in situ X-ray absorption near-edge spectroscopy study, to involve charge-transfer at both the Mn and Fe sites of the ferrite. In 1 M NaCl(aq), the composite electrode exhibits an operating potential window of 1.0 V with a maximum leakage current of 0.3 mA F−1, and it exhibits far superior cycling stability to amorphous MnO2 electrode. Both the specific capacitance and self-discharge behavior of the composite electrode depend strongly on the composite composition. The optimum capacitance occurs at ferrite:CB weight ratio of 7:3, which gives reduced self-discharge rate as compared with CB. The composite electrode also demonstrates capability of high-power delivery.  相似文献   

10.
《Journal of power sources》2006,153(2):419-423
Electrochemical characterization has been carried out for electrodes prepared of several activated carbon fiber samples derived from poly (m-phenylene isophthalamide) (Nomex) in an aqueous solution. Depending on the burn-off due to activation the BET surface area of the carbons was in the order of 1300–2800 m2 g−1, providing an extensive network of micropores. Their capability as active material for supercapacitors was evaluated by using cyclic voltammetry and impedance spectroscopy. Values for the capacitance of 175 F g−1 in sulfuric acid were obtained. Further on, it was observed that the specific capacitance and the performance of the electrode increase significantly with increasing burn-off degree. We believe that this fact can be attributed to the increase of surface area and porosity with increasing burn-off.  相似文献   

11.
《Journal of power sources》2004,137(1):152-157
A sandwich-type supercapacitor consisting of two similar activated carbon fabric–polyaniline (ACF–PANI) composite electrodes was demonstrated to exhibit excellent performance (i.e., highly reversibility and good stability) in NaNO3. Polyaniline with the charge density of polymerization less than or equal to 9 C cm−2 synthesized by means of a potentiostatic method showed a high specific capacitance of 300 F g−1. Influences of the polymerization charge density (i.e., the polymer loading) on the capacitive characteristics of ACF–PANI composites were compared systematically. The capacity of an ACF–PANI electrode reach ca. 3.4 F cm−2 (a 100% increase in total capacity) when the charge density of polymerization is equal to 9 C cm−2. The surface morphology of these ACF–PANI composites was examined by a scanning electron microscope (SEM).  相似文献   

12.
《Journal of power sources》2006,157(1):616-620
Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites were prepared by in situ potentiostatic deposition of PANI onto SWCNTs at the potential of 0.75 V versus SCE, with the aim to investigate the influence of microstructure on the specific capacitance of PANI/SWCNT composites. It was found that the specific capacitance of the PANI/SWCNT composites is strongly influenced by their microstructure, which is correlated to the wt.% of the PANI deposited onto the SWCNTs. The optimum condition, corresponding to the highest specific capacitance, 463 F g−1 (at 10 mA cm−2), was obtained for 73 wt.% PANI deposited onto SWCNTs. The specific capacitance of the PANI/SWCNT composite electrode was highly stable, with a capacitive decrease of 5% during the first 500 cycles and just 1% during the next 1000 cycles, indicative of the excellent cyclic stability of the composite for supercapacitor applications.  相似文献   

13.
《Journal of power sources》2004,125(2):299-308
The capacitive characteristics of activated carbon fabrics (ACFs) coated on the graphite substrates were systematically investigated by means of cyclic voltammetry and the galvanostatic charge–discharge technique. Effects of the PVDF contents in the electronically conductive binder, electrochemical pretreatments, and the electrolytes on the capacitive performance of ACFs were compared in aqueous media. These ACF-pasted electrodes showed the more ideally capacitive responses in 1 M NaNO3 with a specific capacitance of 76 F g−1 when the electronically conductive binder contained 40 wt.% PVDF. The specific capacitance of ACF-pasted electrodes reached a maximum in 0.5 M H2SO4 (about 153 F g−1 measured at 25 mV s−1), due to the presence of a suitable density of oxygen-containing functional groups, when they were subjected to the potentiostatic polarization at 1.8 V (versus reversible hydrogen electrode (RHE)) or potentio-dynamic polarization between 1.3 and 1.8 V in NaNO3 for 20 min. The oxygen-containing functional groups within the electrochemically pretreated ACFs were identified by means of X-ray photoelectron spectroscopy (XPS).  相似文献   

14.
《Journal of power sources》2002,109(1):121-126
In order to improve the efficiency of ruthenium dioxide, RuO2, as an electrochemical capacitor electrode, a RuO2 thin film is deposited on carbon paper and its structure and properties are evaluated. This new composite material is prepared via solution dip-coating of a Ru-ethoxide precursor and heat conversion. The coating thickness is easily controlled by varying the number of repetitions of the preparation process. The resulting structure consists of a by homogeneously coated RuO2 film on carbon paper which has a porous graphite matrix. Extensive electrochemical studies have been performed in 1 M H2SO4 electrolyte in order to evaluate the properties of the composite as an electrode in an electrochemical capacitor. The composite material shows not only high specific capacitance (620 F g−1) but also good power characteristics.  相似文献   

15.
《Journal of power sources》2004,133(2):329-336
The behavior of two types of mesoporous carbons with different pore structures (i.e. unimodal and bimodal) as electrode material in an electrochemical double-layer capacitor has been analyzed. The carbon samples were prepared using mesostructured silica materials (MSM) as templating agents. The unimodal mesoporous carbon has a BET surface area of 1550 m2 g−1, and a pore volume of 1.03 cm3 g−1; the porosity is mainly made up of structural mesopores of ca. 3 nm that exhibit a narrow pore size distribution (PSD). The bimodal carbon shows larger surface area (1730 m2 g−1) and larger pore volume (1.50 cm3 g−1); the porosity is composed of two types of mesopores: structural (size around 3 nm) and complementary (size around 16 nm) mesopores. Both carbons show a disordered 3-D pore structure. Heat treatments at high temperatures (1000 °C) for long times (11 h) do not significantly change the pore structure with respect to the two synthesised carbons (800 °C). From the synthesized and heat-treated carbons, electrodes were processed as composites in which the carbons, polivinilidene fluoride (PVDF) and carbon black (CB) were the components. The effect of the heat treatment and relative CB content on specific capacitance, energy density and power density were studied. We found a specific capacitance of 200 F g−1 for low current density (1 mA cm−2) and 110 F g−1 for high current density (150 mA cm2). Moreover, the curve of the specific capacitance versus current density shows three regimes, which are related to the three types of pore: micropores, structural mesopores and complementary mesopores. An energy density of 3 Wh kg−1 at a power density of 300 W kg−1 was obtained in some particular cases.  相似文献   

16.
《Journal of power sources》2006,156(2):705-711
Polyaniline is deposited potentiodynamically on a nickel substrate in the presence of p-toluene sulfonic acid and the specific capacitance is estimated. The electrochemical characterisation of the electrode is carried out by means of cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge experiments. The specific capacitance is ∼4.05 × 102 F g−1. This indicates the feasibility of the polyaniline-coated nickel electrode for use in electrochemical supercapacitors.  相似文献   

17.
《Journal of power sources》2006,161(2):1479-1485
Bismuth oxide (Bi2O3) thin films are grown on copper substrates at room temperature by electrodeposition from an aqueous alkaline nitrate bath. The usefulness of electrochemically deposited Bi2O3 for electrochemical supercapacitors is proposed for the first time. The supercapacitor properties of Bi2O3 electrode are studied in aqueous NaOH solution. The Bi2O3 electrode exhibits very good electrochemical supercapacitive characteristics as well as stability in aqueous NaOH electrolyte. The effect of electrolyte concentration, scan rate, and number of cycles on the specific capacitance of Bi2O3 electrodes has been studied. The highest specific capacitance achieved with the electrodeposited Bi2O3 films is 98 F g−1.  相似文献   

18.
《Journal of power sources》2006,161(1):737-742
Manganese oxide film electrodes for electrochemical capacitors were deposited on the polished Pt foils by electrostatic spray deposition (ESD) from KMnO4 precursor solution. The electrochemical properties of electrodes were systematically studied using cyclic voltammetry (CV), constant current charge–discharge tests, and electrochemical impedance spectroscopy (EIS). The specific capacitance (SC) of thick deposited film was 149 F g−1 at the very high scan rate of 500 mV s−1, in comparison with 209 F g−1 at the low scan rate of 5 mV s−1. The electrode shows good cyclic performance. The initial SC value was 163 F g−1 and 103% of the initial SC can be retained after 10,000 cycles at the scan rate of 50 mV s−1.  相似文献   

19.
《Journal of power sources》2002,111(1):185-190
The performance of a newly designed, polyaniline–activated carbon, hybrid electrochemical capacitor is evaluated. The capacitor is prepared by using polyaniline as a positive electrode and activated carbon as a negative electrode. From a constant charge–discharge test, a specific capacitance of 380 F g−1 is obtained. The cycling behaviour of the hybrid electrochemical capacitor is examined in a two-electrode cell by means of cyclic voltammetry. The cycle-life is 4000 cycles. Values for the specific energy and specific power of 18 Wh kg−1 and 1.25 kW kg−1, respectively, are demonstrated for a cell voltage between 1 and 1.6 V.  相似文献   

20.
Here, a novel yuba-like porous carbon microrod is prepared via a simple and facile strategy by using the fluffy fibers of celosia cristata petals (FCCP) as the raw material. The optimized carbon microrod (FCCP-CM-900) possesses unique yuba-like structure, high specific surface area (1680 m2 g−1) and large pore volume (0.98 cm3 g−1), and effective nitrogen (∼4.52 at.%) and oxygen (∼5.49 at.%) doping, which can enhance the wettability and conductivity (7.9 S cm−1). As the electrode material for supercapacitor, FCCP-CM-900-based supercapacitor presents high specific capacitance (314.5 F g−1 at 0.5 A g−1) in 6.0 M KOH aqueous electrolyte. The FCCP-CM-900-based symmetrical supercapacitor displays high energy density (18.6 Wh kg−1 at 233.4 W kg−1) and outstanding cycling stability (98% capacitance retention after 10,000 cycles) in 1.0 M Na2SO4 electrolyte. In addition, served as oxygen reduction electrocatalyst, the FCCP-CM-900 also exhibits excellent catalytic activity, good durability, together with high methanol tolerance in alkaline electrolyte, which makes it a highly efficient air cathode material toward zinc–air cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号