首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of power sources》2002,111(2):329-334
A concentrated nitric acid solution was used as an oxidant to modify the electrochemical performance of natural graphite as anode material for lithium ion batteries. Results of X-ray photoelectron spectroscopy, electron paramagnetic resonance, thermogravimmetry, differential thermal analysis, high resolution electron microscopy, and measurement of the reversible capacity suggest that the surface structure of natural graphite was changed, a fresh dense layer of oxides was formed. Some structural imperfections were removed, and the stability of the graphite structure increased. These changes impede decomposition of electrolyte solvent molecules, co-intercalation of solvated lithium ions and movement of graphene planes along the a-axis direction. Concomitantly, more micropores were introduced, and thus, lithium intercalation and deintercalation were favored and more sites were provided for lithium storage. Consequently, the reversible capacity and the cycling behavior of the modified natural graphite were much improved by the oxidation. Obviously, the liquid–solid oxidation is advantageous in controlling the uniformity of the products.  相似文献   

2.
We report on a new composite material in view of its application as a negative electrode in lithium-ion batteries. A commercial preceramic polysilazane mixed with graphite in 1:1 weight ratio was transformed into a SiCN/graphite composite material through a pyrolytic polymer-to-ceramic conversion at three different temperatures, namely 950 °C, 1100 °C and 1300 °C. By means of Raman spectroscopy we found successive ordering of carbon clusters into nano-crystalline graphitic regions with increasing pyrolysis temperature. The reversible capacity of about 350 mAh g−1 was measured with constant current charging/discharging for the composite prepared at 1300 °C. For comparison pure graphite and pure polysilazane-derived SiCN ceramic were examined as reference materials. During fast charging and discharging the composite material demonstrates enhanced capacity and stability. Charging and discharging in half an hour lead to about 200 and 10 mAh g−1, for the composite annealed at 1300 °C and pure graphite, respectively. A clear dependence between the final material capacity and pyrolysis temperature is found and discussed with respect to possible application in batteries, i.e. practical discharging potential limit. The best results in terms of capacity recovered under 1 V and high rate capability were also obtained for samples synthesized at 1300 °C.  相似文献   

3.
A spherical nanostructured Si/graphite/carbon composite is synthesized by pelletizing a mixture of nano-Si/graphite/petroleum pitch powders, followed by heat treatment at 1000 °C under an argon atmosphere. The structure of the composite sphere is examined by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDAX). The resultant composite sphere consists of nanosized silicon and flaked graphite embedded in a carbon matrix pyrolyzed from petroleum pitch, in which the flaked graphite sheets are concentrically distributed in a parallel orientation. The composite material exhibits good electrochemical properties, a high reversible specific capacity of ∼700 mAh g−1, a high coulombic efficiency of 86% on the first cycle, and a stable capacity retention. The enhanced electrochemical performance is attributed to the structural stability of the composite sphere during the charging–discharging process.  相似文献   

4.
硅基负极材料具有比容量高、电压平台低、环境友好、资源丰富等优点,有望替代石墨负极应用于下一代高比能锂离子电池。但是硅的导电性较差,且在充放电过程中存在巨大的体积效应,极易导致电极极化、材料粉化、SEI膜重构、库仑效率低和容量持续衰减。硅和碳复合能很好地综合两者的优势,形成结构稳定、循环性好及容量高的负极材料。本文从不同维度的硅(SiNPs、SiNTs/SiNWs、SiNFs、Bulk Si)与碳复合这一角度,综述了硅碳复合材料在结构设计、制备工艺、电化学性能等方面的最新研究进展,并对未来的硅碳复合材料的研究工作进行了展望。  相似文献   

5.
A simple approach is proposed to prepare C-SiO2 composites as anode materials for lithium ion batteries. In this novel approach, nano-sized silica is soaked in sucrose solution and then heat treated at 900 °C under nitrogen atmosphere. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis shows that SiO2 is embedded in amorphous carbon matrix. The electrochemical test results indicate that the electrochemical performance of the C-SiO2 composites relates to the SiO2 content of the composite. The C-SiO2 composite with 50.1% SiO2 shows the best reversible lithium storage performance. It delivers an initial discharge capacity of 536 mAh g−1 and good cyclability with the capacity of above 500 mAh g−1 at 50th cycle. Electrochemical impedance spectra (EIS) indicates that the carbon layer coated on SiO2 particles can diminish interfacial impedance, which leads to its good electrochemical performance.  相似文献   

6.
《Journal of power sources》2002,111(2):350-356
Novel surface modification approach for graphite anode of lithium ion batteries was developed in this study. Poly(acrylonitrile) was in situ encapsulated on the surface of natural graphite (N-graphite) particles via radiation-initiated polymerization. The graphite obtained shows a large improvement in electrochemical performance such as initial Coulombic efficiency and cycleability compared with the original N-graphite. The structural stability of graphite surface is enhanced due to the fact that encapsulated poly(acrylonitrile) can depress the co-intercalation of solvated lithium ion.  相似文献   

7.
随着锂离子电池行业的兴起,其负极材料也得到了蓬勃发展。我国在锂离子电池领域所占据的市场份额仅次于日韩,已有多家负极材料厂商处于世界先进水平。为了促进锂离子电池负极行业的健康发展,我国从2009年开始就陆续颁布了相关标准,涉及原料、产品和检测方法,提出了各项参数的具体指标,并给出了相应的检测方法,对负极材料的实际生产和应用起到了指导性作用。本文介绍了这些标准的主要内容和要点,包括晶体结构、粒度分布、密度、比表面积、pH值、水含量、主元素含量、杂质元素含量、首次放电比容量和首次充放电效率。此外,本文还对今后的标准制定工作提出了部分建议。  相似文献   

8.
Carbon particles modified macroporous Si/Ni composite (MP-Si/Ni/C) is easily obtained via a facile fabrication of porous Si/Ni precursor by dealloying SiNiAl alloy followed by a surface growth of carbon nanoparticles. MP-Si/Ni/C composite possesses the multiply conductivity modification that are built through mixing Ni dispersoid and growing one layer of carbon particles. Coupled with the structural advantages of interconnected network backbone, rich voids, and the coated carbon particles, MP-Si/Ni/C exhibits dramatically enhanced lithium storage performances with excellent reversible capacity, enhanced rate performance, as well as outstanding cycling stability compared with pure MP-Si and MP-Si/Ni. Especially, the reversible capacity remains up to 1113.1 and 708.8 mA h g−1 at the current densities of 200 and 1000 mA g−1 after 120 cycles, respectively. Besides, it shows excellent rate capability even when continuously cycled at high current density of 3000 mA g−1. With the advantages of unique structure, excellent performances, and facile preparation, the as-made MP-Si/Ni/C composite shows promising application potential as an alternative anode for lithium ion batteries.  相似文献   

9.
Two types of Si-graphite (Si-C) composites are synthesized and evaluated for anode materials of lithium secondary batteries. The mechano-chemical milling and the rotational impact blending methods are applied to synthesize two types of Si-C composites. Graphite powders having Si on the surface (type A) is synthesized by mechano-chemical milling using the pitch as a binder. Si embedded inside the graphite particle (type B) is synthesized by rotational impact blending. The loading level of Si is about 20 wt% for both type Si-C composites. The location of Si is verified by observing cross sectional images of particle and conducting EDS mapping. The initial discharge capacity of type B has larger value than that of type A, while the type A shows better cycle performance than type B. The efficiency of first cycle is about 87% for both types A and B.  相似文献   

10.
《Journal of power sources》2006,161(1):541-544
NiO–Ni nanocomposite was prepared by calcining a mixture of Ni2(OH)2CO3 and ethanol in a tube furnace at 700 °C for 45 min in air. The microstructure and morphology of the powders were characterized by means of X-ray diffraction (XRD) and transmission electron microscopy (TEM). In the composite, nanoscale Ni particles (<10 nm) were dispersed in the NiO matrix (about 100 nm). Electrochemical tests showed that the nanocomposite had higher initial and reversible capacity than pure NiO. The presence of the nanoscale Ni phase had improved both of the initial coulombic efficiency and the cycling performance, due to its catalytic activity, which would facilitate the decomposition of Li2O and the SEI during the charge process.  相似文献   

11.
Silicon/graphite/disordered carbon (Si/G/DC) is coated by Li2ZrO3 using Zr(NO3)4·5H2O and CH3COOLi·2H2O as coating reagents. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are used to characterize Li2ZrO3-coated Si/G/DC composite. The Li2ZrO3-coated Si/G/DC composite exhibits a high reversible capacity with no capacity fading from 2nd to 70th cycle, indicating its excellent cycleability when used as anode materials for lithium ion batteries. A compact and stable solid-electrolyte interphase (SEI) layer is formed on the surface of Li2ZrO3-coated Si/G/DC electrode. Analysis of electrochemical impedance spectra (EIS) shows that the resistance of the coated material exhibits less variation during cycling, which indicates the integrity of electrode structure is kept during cycling. XPS shows that F and P elements do not appear in the SEI layers of Li2ZrO3-coated Si/G/DC electrode, while they have a relatively high content in SEI layers of Si/G/DC electrode. The improvement of Li2ZrO3-coated Si/G/DC is attributed to the decrease of lithium insertion depth and the formation of stable SEI film.  相似文献   

12.
The study of Mg2Si/C composites as anode materials for lithium ion batteries is reported in this paper. Firstly, Mg2Si was synthesized by mechanically activated annealing (MAA) technique and the preparing conditions for pure Mg2Si alloy were investigated and optimized. Then the composite materials of Mg2Si and carbon materials such as CNTs and CMS with different ratios were prepared by the followed ball-milling techniques. Their electrochemical performances were compared by the galvanostatically charge/discharge and EIS experiments. The pure Mg2Si alloy delivers a large initial capacity, but the capacity decreases rapidly with cycling. In contrast, the composites show good cyclic stability and deliver a reversible capacity of about 400 mAh g−1 with 40% carbon in the composite. The results of EIS indicate that the composite of Mg2Si/CMS has better interface stability than that of pure Mg2Si materials.  相似文献   

13.
《Journal of power sources》2001,101(2):206-212
A carbon-coated graphite is investigated as the negative electrode for Li-ion batteries. The carbon-coated graphite particles are prepared by simple heat-treatment of mixtures of graphite and poly(vinyl chloride), PVC, at 800–1000°C in an argon flow. The carbon coating reduces significantly the initial irreversible capacity of the graphite in a propylene carbonate-based electrolyte, by suppressing the solvated lithium ion intercalation, and also improves the initial charge–discharge coulombic efficiency. By carbon coating, the specific surface area of graphite particles is greatly increased. These findings can be explained by assuming that a turbostratic structure of PVC-carbon resists irreversible side-reactions which are controlled predominantly by active, edge surface sites.  相似文献   

14.
A novel CuO-nanotubes/SnO2 composite was prepared by a facile solution method and its electrochemical properties were investigated as the anode material for Li-ion battery. The as-prepared composite consisted of monoclinic-phase CuO-nanotubes and cassiterite structure SnO2 nanoparticles, in which SnO2 nanoparticles were dramatically decorated on the CuO-nanotubes. The composite showed higher reversible capacity, better durability and high rate performance than the pure SnO2. The better electrochemical performance could be attributed to the introducing of the CuO-nanotubes. It was found that the CuO-nanotubes were reduced to metallic Cu in the first discharge cycle, which can retain tube structure of the CuO-nanotubes as a tube buffer to alleviate the volume expansion of SnO2 during cycling and act as a good conductor to improve the electrical conductivity of the electrodes.  相似文献   

15.
Antimony-coated mesophase graphite powder (MGP) composites are developed as an alternate anode material for Li-ion batteries using an argon atmosphere pyrolysis technique. The specific discharge capacity and cycle life of the Sb-MGP composites are studied. The Sb loading of the Sb-MGP has a significant effect on the composite performance. The Sb-MGP samples demonstrate improved lithium storage capacity. The Sb loading on MGP is optimized experimentally to obtain the maximum reversible capacity for composite electrodes. The reaction processes of lithium intercalation/de-intercalation in MGP and alloying of lithium/Sb are identified by cyclic voltammetry. ICP and EDS measurements confirm the presence of Sb in the MGP matrix. Differential scanning calorimetry (DSC) scans of lithium intercalated anodes show that Sb loading on the MGP material reduces the thermal stability of the anode.  相似文献   

16.
Reduced graphene oxide/tin oxide composite is prepared by homogenous coprecipitation. Characterizations show that tin oxide particles are anchored uniformly on the surface of reduced graphene oxide platelets. As an anode material for Li ion batteries, it has 2140 mAh g−1 and 1080 mAh g−1 capacities for the first discharge and charge, respectively, which is more than the theoretical capacity of tin oxide, and has good capacity retention with a capacity of 649 mAh g−1 after 30 cycles. The simple synthesis method can be readily adapted to prepare other composites containing reduced graphene oxide as a conducting additive that, in addition to supporting metal oxide nanoparticles, can also provide additional Li binding sites to, perhaps, further enhance capacity.  相似文献   

17.
The electrochemical properties of Li2SiS3 were investigated in a solid electrolyte. Li2SiS3 was converted to elemental Si, and the resultant Si was formed into Si-Li alloy in the reduction process; however, the reverse reaction was not completed due to the loss of electronic conduction upon reoxidation. FeS was dispersed as a conductive additive in Li2SiS3 films by pulsed laser deposition (PLD). The addition allowed successive reactions to proceed at a large capacity with small capacity-fading during the cycling process in spite of the small FeS fraction. This result indicates that Li2SiS3 + FeS thin film is a promising anode for solid-state lithium batteries.  相似文献   

18.
MnO powder materials are investigated as anode active materials for Li-ion batteries. Lithium is stored reversibly in MnO through conversion reaction and interfacial charging mechanism, according to the results of ex situ XRD, TEM and galvanostatic intermittent titration technique. A layer of the solid electrolyte interphase with a thickness of 20-60 nm is covered on MnO particles after full insertion. MnO powder materials show reversible capacity of 650 mAh g−1 with average charging voltage of 1.2 V. It can deliver 400 mAh g−1 at a rate of 400 mA g−1. The cyclic performance of MnO is improved significantly after decreasing particle size and coating with a layer of carbon. Among observed transition metal oxides, MnO shows relatively lower voltage hysteresis (<0.7 V) between the discharging and the charging curves at 0.05 C. In addition to its environmental benign feature and high density (5.43 g cm−3), MnO seems a promising high capacity anode material for Li-ion batteries among transition metal oxides. However, the initial columbic efficiency is less than 65% and the voltage hysteresis is still too high. The origins of them are discussed.  相似文献   

19.
Polyethylene oxide (PEO)-coated hollow SnNi nanospheres (SnNi@PEO) and hollow SnNi nanospheres were obtained by a galvanic replacement method using Ni nanospheres as the sacrificial template association with surfactant (sodium dodecyl sulfate, SDS). Compared with hollow SnNi nanospheres and solid Sn nanospheres, the obtained SnNi@PEO were applied for the first time in lithium ion batteries (LIBs) and showed better electrochemical properties (reversible capacity of 560 mAh g?1 after 100 cycles with a coulomb efficiency above 98%). The excellent electrochemical performance of SnNi@PEO can be ascribed to hollow structure and PEO coating to alleviate volume expansion. To further comprehending of the mechanical stability, a diffusion-stress coupled model was solved numerically to simulate the diffusion-induced stress evolution of the single sphere during the lithiation process in LIBs.  相似文献   

20.
In this paper, dopamine hydrochloride (DPH) is introduced to synthesize ZIF-8@ZIF-67@DPH in the preparation of ZIF-8@ZIF-67. ZnSe/CoSe/NCDPH (N-doped carbon) composites are calcined in a high-temperature inert atmosphere with ZIF-8@ZIF-67@DPH as the precursor, selenium powder as the selenium source. ZnSe/CoSe/NCDPH has high discharge specific capacity, good cycle stability and outstanding rate performance. The first discharge capacity of ZnSe/CoSe/NCDPH is 1616.6 mAh g−1 at the current density of 0.1 A g−1, and the reversible capacity remains at 1214.2 mAh g−1 after 100 cycles, the reversible capacity is 416.7 mAh g−1 after 1000 cycles at 1 A g−1. Therefore, ZnSe/CoSe/NCDPH composites provide a new step for the research and synthesis of new stable, high-capacity, and safe high-performance lithium ion batteries. The bimetallic selenide composites not only have bimetallic active sites, but also can form synergistic effect between different metal phases, which can effectively reduce the capacity attenuation caused by volume expansion and reactive stress enrichment during lithium storage of metal oxide anode materials. Meanwhile, N-doped carbon can improve the conductivity and provide more active sites to store lithium, thus improving its lithium storage capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号