首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 134 毫秒
1.
Transient behavior is a key property in the vehicular application of proton exchange membrane (PEM) fuel cells. A better control technology is constructed to increase the transient performance of PEM fuel cells. A steady-state isothermal analytical fuel cell model is constructed to analyze mass transfer and water transport in the membrane. To prevent the starvation of air in the PEM fuel cell, time delay control is used to regulate the optimum stoichiometric amount of oxygen, although dynamic fluctuations exist in the PEM fuel cell power. A bidirectional DC/DC converter connects the battery to the DC link to manage the power distribution between the fuel cell and the battery. Dynamic evolution control (DEC) allows for adequate pulse-width modulation (PWM) control of the bidirectional DC/DC converter with fast response. Matlab/Simulink/Simpower simulation is performed to validate the proposed methodology, increase the transient performance of the PEM fuel cell system and satisfy the requirement of energy management.  相似文献   

2.
Fuel cells output power depends on the operating conditions, including cell temperature, oxygen partial pressure, hydrogen partial pressure, and membrane water content. In each particular condition, there is only one unique operating point for a fuel cell system with the maximum output. Thus, a maximum power point tracking (MPPT) controller is needed to increase the efficiency of the fuel cell systems. In this paper an efficient method based on the particle swarm optimization (PSO) and PID controller (PSO-PID) is proposed for MPPT of the proton exchange membrane (PEM) fuel cells. The closed loop system includes the PEM fuel cell, boost converter, battery and PSO-PID controller. PSO-PID controller adjusts the operating point of the PEM fuel cell to the maximum power by tuning of the boost converter duty cycle. To demonstrate the performance of the proposed algorithm, simulation results are compared with perturb and observe (P&O) and sliding mode (SM) algorithms under different operating conditions. PSO algorithm with fast convergence, high accuracy and very low power fluctuations tracks the maximum power point of the fuel cell system.  相似文献   

3.
A portable proton exchange membrane (PEM) fuel cell-battery power system that uses hydrogen as fuel has a higher power density than conventional batteries, and it is one of the most promising environmentally friendly small-scale alternative energy sources. A general methodology of modeling, control and building of a proton exchange membrane fuel cell-battery system is introduced in this study. A set of fuel cell-battery power system models have been developed and implemented in the Simulink environment. This model is able to address the dynamic behaviors of a PEM fuel cell stack, a boost DC/DC converter and a lithium-ion battery. To control the power system and thus achieve proper performance, a set of system controllers, including a PEM fuel cell reactant supply controller and a power management controller, were developed based on the system model. A physical 100 W PEM fuel cell-battery power system with an embedded micro controller was built to validate the simulation results and to demonstrate this new environmentally friendly power source. Experimental results demonstrated that the 100 W PEM fuel cell-battery power system operated automatically with the varying load conditions as a stable power supply. The experimental results followed the basic trend of the simulation results.  相似文献   

4.
This work describes a step-up non-isolated DC/DC converter aimed for fuel cell stand-alone power systems. The proposed converter has the following features: simple structure based on the basic boost topology that reduces the number of components; it uses the interleaving technique in order to reduce the current ripple at the input and output sides, reduction of the inductors size, higher frequency that reduce the output filter capacitor and easier power losses management. In addition, the use of an inner current control loop in the input side assures power sharing and easy module parallelization. The converter feeds a backup battery that maintains a DC voltage level at the main bus. An outer battery-charging loop controls the converter. Experimental validation is given for a four-phases 1 kW prototype at 100 kHz PWM switching frequency connected to a Nexa Ballard (1.2 kW-46 A) PEM fuel cell.  相似文献   

5.
In this paper, a physical model for a distributed generation (DG) system with power quality improvement capability is presented. The generating system consists of a 5 kW PEM fuel cell, a natural gas reformer, hydrogen storage bottles and a bank of ultra-capacitors. Additional power quality functions are implemented with a vector-controlled electronic converter for regulating the injected power.  相似文献   

6.
In this work a state and transfer function model of the set made up of a proton exchange membrane (PEM) fuel cell and a DC/DC converter is developed. The set is modelled as a plant controlled by the converter duty cycle. In addition to allow setting the plant operating point at any point of its characteristic curve (two interesting points are maximum efficiency and maximum power points), this approach also allows the connection of the fuel cell to other energy generation and storage devices, given that, as they all usually share a single DC bus, a thorough control of the interconnected devices is required. First, the state and transfer function models of the fuel cell and the converter are obtained. Then, both models are related in order to achieve the fuel cell+DC/DC converter set (plant) model. The results of the theoretical developments are validated by simulation on a real fuel cell model.  相似文献   

7.
An experimental study on the transient power characteristics of a fuel cell generator has been conducted. The generator is hybridized by a proton exchange membrane (PEM) as the main power source and a lithium-ion battery as the secondary power source. power-conditioning module consisting of a main bidirectional converter and an auxiliary converter has been designed to manage the hybrid power of the generator that copes with fast dynamics of variable loads. Sensors embedded in the generator have measured the electrical properties dynamically. It was found that the present power-conditioning scheme has well controlled the power flow between the fuel cell stack and the battery by regulating the power flow from or to the battery. In addition, the thermal management system using pulse width modulation (PWM) schemes could limit the operation temperature of the fuel cell generator in a designed range. Furthermore, the dynamics of electrical efficiency of the generator are found to be parallel with those of the net system power. Finally, the stability and reliability of the fuel cell generator is proven by the rational dynamic behaviors of thermal and electrical properties for over 30-h demonstration.  相似文献   

8.
A fuel cell powered system is regarded as a high current and low voltage source. To boost the output voltage of a fuel cell, a DC/DC converter is employed. Since these two systems show different dynamics, they need to be coordinated to meet the demand of a load. This paper proposes models for the two systems with associated controls, which take into account a PEM fuel cell stack with air supply and thermal systems, and a PWM DC/DC converter. The integrated simulation facilitates optimization of the power control strategy, and analyses of interrelated effects between the electric load and the temperature of cell components. In addition, the results show that the proposed power control can coordinate the two sources with improved dynamics and efficiency at a given dynamic load.  相似文献   

9.
This research develops an efficient and robust polymer electrolyte membrane (PEM) fuel cell/battery hybrid operating system. The entire system possesses its own rapid dynamic response benefited from hybrid connection and power split characteristics due to DC/DC buck-boost converter. An indispensable energy management system (EMS) plays a significant role in achieving optimal fuel economy and in a promising running stability. EMS as an indispensable part plays a significant role in achieving optimal fuel economy and promising operation stability. This study aims to develop an adaptive supervisory EMS that comprises computer-aided engineering tools to monitor, control, and optimize the performance of the hybrid power system. A stationary fuel cell/battery hybrid operating system is optimized using adaptive-Pontryagin's minimum principle (A-PMP). The proposed algorithm depends on the adaptation of the control parameter (i.e., fuel cell output power) from the state of charge (SOC) and load power feedback. The integrated model simulated in a Matlab/Simulink environment includes the fuel cell, battery, DC/DC converter, and power requirements models by analyzing the three different load profiles. Real-time experiments are performed to verify the effectiveness of EMS after analyzing the simulated operating principle and control scheme.  相似文献   

10.
A fully-integrated micro PEM fuel cell system with a NaBH4 hydrogen generator was developed. The micro fuel cell system contained a micro PEM fuel cell and a NaBH4 hydrogen generator. The hydrogen generator comprised a NaBH4 reacting chamber and a hydrogen separating chamber. Photosensitive glass wafers were used to fabricate a lightweight and corrosion-resistant micro fuel cell and hydrogen generator. All of the BOP such as a NaBH4 cartridge, a micropump, and an auxiliary battery were fully integrated. In order to generate stable power output, a hybrid power management operating with a micro fuel cell and battery was designed. The integrated performance of the micro PEM fuel cell with NaBH4 hydrogen generator was evaluated under various operating conditions. The hybrid power output was stably provided by the micro PEM fuel cell and auxiliary battery. The maximum power output and specific energy density of the micro PEM fuel cell system were 250 mW and 111.2 W h/kg, respectively.  相似文献   

11.
This paper addresses the development of new variable step size fuzzy based MPPT controller. In this study, the fuzzy logic approach is firstly used to auto-scale the variable step size of the Incremental Conductance (IC) MPPT controller. Secondly, the proposed variable step size fuzzy based MPPT controller is used to track the output power of the PEM fuel cell system composed of 7 kW fuel cell supplying a 50Ω resistive load via a DC-DC boost converter controlled using the proposed MPPT. The proposed variable step size fuzzy-based MPPT controller is compared to the conventional fixed step size IC, the variable step size IC and the fuzzy scaled variable step size IC MPPTs using the implemented Matlab/Simulink PEM Fuel Cell power system model. Comparative simulation results between the four studied MPPTs show better performances for the proposed fuzzy based variable step size MPPT in term of: response time reduction between 3.6% and 82.35%; overshoot reduction between 34.55% and 100%; and ripple reduction between 70.93% and 100%, improving as consequence the fuel cell lifetime affected by high current ripple.  相似文献   

12.
Xiuqin Zhang  Juncheng Guo  Jincan Chen   《Energy》2010,35(12):5294-5299
Based on the irreversible model of a PEM fuel cell working at steady state, expressions for the power output, efficiency and entropy production rate of the PEM fuel cell are analytically derived by using the theory of electrochemistry and non-equilibrium thermodynamics. The effects of multi-irreversibilities resulting from electrochemical reaction, heat transfer and electrical resistance on the key parameters of the PEM fuel cell are analyzed. The curves of the power output, efficiency and entropy production rate of the PEM fuel cell varying with the electric current density are represented through numerical calculation. The general performance characteristics of the PEM fuel cell are revealed and the optimum criteria of the main performance parameters are determined. Moreover, the optimal matching condition of the load resistance is obtained from the relations between the load resistance and the power output and efficiency. The effects of the leakage resistance on the performance of the PEM fuel cell are expounded and the optimally operating states of the PEM fuel cell are further discussed.  相似文献   

13.
《Journal of power sources》2005,145(2):610-619
The development of fuel cell electric vehicles requires the on-board integration of fuel cell systems and electric energy storage devices, with an appropriate energy management system. The optimization of performance and efficiency needs an experimental analysis of the power train, which has to be effected in both stationary and transient conditions (including standard driving cycles).In this paper experimental results concerning the performance of a fuel cell power train are reported and discussed. In particular characterization results for a small sized fuel cell system (FCS), based on a 2.5 kW PEM stack, alone and coupled to an electric propulsion chain of 3.7 kW are presented and discussed. The control unit of the FCS allowed the main stack operative parameters (stoichiometric ratio, hydrogen and air pressure, temperature) to be varied and regulated in order to obtain optimized polarization and efficiency curves. Experimental runs effected on the power train during standard driving cycles have allowed the performance and efficiency of the individual components (fuel cell stack and auxiliaries, dc–dc converter, traction batteries, electric engine) to be evaluated, evidencing the role of output current and voltage of the dc–dc converter in directing the energy flows within the propulsion system.  相似文献   

14.
Using fuel cell systems for distributed generation (DG) applications represents a meaningful candidate to conventional plants due to their high power density and the heat recovery potential during the electrochemical reaction. A hybrid power system consisting of a proton exchange membrane (PEM) fuel cell stack and an organic Rankine cycle (ORC) is proposed to utilize the waste heat generated from PEM fuel cell. The system performance is evaluated by the steady-state mathematical models and thermodynamic laws. Meanwhile, a parametric analysis is also carried out to investigate the effects of some key parameters on the system performance, including the fuel flow rate, PEM fuel cell operating pressure, turbine inlet pressure and turbine backpressure. Results show that the electrical efficiency of the hybrid system combined by PEM fuel cell stack and ORC can be improved by about 5% compared to that of the single PEM fuel cell stack without ORC, and it is also indicated that the high fuel flow rate can reduce the PEM fuel cell electrical efficiency and overall electrical efficiency. Moreover, with an increased fuel cell operating pressure, both PEM fuel cell electrical efficiency and overall electrical efficiency firstly increase, and then decrease. Turbine inlet pressure and backpressure also have effects on the performance of the hybrid power system.  相似文献   

15.
Nonlinearity and the time-varying dynamics of fuel cell systems make it complex to design a controller for improving output performance. This paper introduces an application of a model reference adaptive control to a low-power proton exchange membrane (PEM) fuel cell system, which consists of three main components: a fuel cell stack, an air pump to supply air, and a solenoid valve to adjust hydrogen flow. From the system perspective, the dynamic model of the PEM fuel cell stack can be expressed as a multivariable configuration of two inputs, hydrogen and air-flow rates, and two outputs, cell voltage and current. The corresponding transfer functions can be identified off-line to describe the linearized dynamics with a finite order at a certain operating point, and are written in a discrete-time auto-regressive moving-average model for on-line estimation of parameters. This provides a strategy of regulating the voltage and current of the fuel cell by adaptively adjusting the flow rates of air and hydrogen. Experiments show that the proposed adaptive controller is robust to the variation of fuel cell system dynamics and power request. Additionally, it helps decrease fuel consumption and relieves the DC/DC converter in regulating the fluctuating cell voltage.  相似文献   

16.
In this paper, the individual roles of inlet anode and cathode humidification, and their influences on PEM fuel cell’s electrical performance are discussed systematically by using a pseudo two-dimensional, two-phase PEM fuel cell model. It follows that the maximum power density point of a PEM fuel cell is strongly dependent on the combination of the inlet anode and cathode humidification conditions. Their influences, however, are predicted to be highly asymmetrical, with the anode and cathode humidification mainly affecting ohmic and concentration overpotential, respectively. The physical explanation to this asymmetry is given with the aid of a detailed set of simulation results. Finally, the developed understanding of their influences are employed to formulate two examples on the use of inlet relative humidity control as a simple and effective method for maximizing the volumetric power density and operating range of PEM fuel cell, respectively.  相似文献   

17.
Transient behaviour is a key parameter for the vehicular application of proton-exchange membrane (PEM) fuel cell. The goal of this presentation is to construct better control technology to increase the dynamic performance of a PEM fuel cell. The PEM fuel cell model comprises a compressor, an injection pump, a humidifier, a cooler, inlet and outlet manifolds, and a membrane-electrode assembly. The model includes the dynamic states of current, voltage, relative humidity, stoichiometry of air and hydrogen, cathode and anode pressures, cathode and anode mass flow rates, and power. Anode recirculation is also included with the injection pump, as well as anode purging, for preventing anode flooding. A steady-state, isothermal analytical fuel cell model is constructed to analyze the mass transfer and water transportation in the membrane. In order to prevent the starvation of air and flooding in a PEM fuel cell, time delay control is suggested to regulate the optimum stoichiometry of oxygen and hydrogen, even when there are dynamical fluctuations of the required PEM fuel cell power. To prove the dynamical performance improvement of the present method, feed-forward control and Linear Quadratic Gaussian (LQG) control with a state estimator are compared. Matlab/Simulink simulation is performed to validate the proposed methodology to increase the dynamic performance of a PEM fuel cell system.  相似文献   

18.
Based on the models of a proton exchange membrane (PEM) fuel cell working at steady state and a semiconductor thermoelectric generator, a hybrid system consisting of a PEM fuel cell, a semiconductor thermoelectric generator, and a regenerator is originally put forward. Expressions for the efficiencies and power outputs of the fuel cell, thermoelectric generator, and hybrid system are derived. The relation between the operating electric currents in the fuel cell and thermoelectric generator is obtained. The maximum power output of the hybrid system is numerically given. The optimally operating electric currents in the fuel cell and thermoelectric generator are calculated, and consequently, the optimal region of the hybrid system is determined. The results obtained here will provide some guidance for further understanding the performance and operation of practical PEM fuel cell-thermoelectric generator hybrid systems.  相似文献   

19.
In this paper, a new parameter extraction method for accurate modeling of proton exchange membrane (PEM) fuel cell systems is presented. The main difficulty in obtaining an accurate PEM fuel cell dynamical model is the lack of manufacturer information about the exact values of the parameters needed for the model. In order to obtain a realistic dynamic model of the PEM system, the electrochemical considerations of the system are incorporated into the model. Although many models have been reported in the literature, the parameter extraction issue has been neglected. However, model parameters must be precisely identified in order to obtain accurate simulation results. The main contribution of the present work is the application of the simulated annealing (SA) optimization algorithm as a method for identification of PEM fuel cell model parameter identification. The major advantage of SA is its ability to avoid becoming trapped in local minimum, as well as its flexibility and robustness. The parameter extraction and performance validation are carried out by comparing experimental and simulated results. The good agreement observed confirms the usefulness of the proposed extraction approach together with adopted PEM fuel cell model as an efficient tool to help design of power fuel cell power systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Proton exchange membrane (PEM) fuel cells are attractive because of advantages such as low-temperature operation, no emission of harmful gases and high efficiency. However, the bipolar plates used in the state-of-the-art planar architecture are costly and increase the dead weight of the cell. In addition, the flow channels in the planar fuel cell increase the difficulty in removing the water produced in the cathode during cell operation. Cylindrical PEM fuel cells, on the other hand, do not require bipolar plates and there is no need for precisely machined flow channels. Thus, cylindrical PEM fuel cells are cheap, efficient in water management, and possess higher volumetric and gravimetric power density compared to planar PEM fuel cells. The design of a cylindrical fuel cell is very simple, but the fabrication of the same is fairly complex. In this work, a novel cathode current collector design for cylindrical PEM fuel cell has been developed. The cell performance was limited by low open circuit voltage and high ohmic resistance. The open circuit voltage of the cell is increased from 0.85 V to 0.95 V using an acrylic based adhesive to seal the membrane edges. The contact resistance of the cell is reduced from 75 mOhm to 50 mOhm by increasing the contact pressure on the membrane electrode assembly and it is further reduced to 30 mOhm by gold coating the current collectors. Furthermore, a cumulative 40% increase in peak power has been achieved from the optimization of cathode rib width and hydrogen flow rate. The optimized cell delivered a current density of 400 mA/cm2 at 0.6 V and peak power of 2 W, which is appreciable considering the fact that the cell is air-breathing and operated with very minimal subsystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号