首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of power sources》2006,155(2):203-212
The characteristics of a 50 W direct methanol fuel cell (DMFC) stack were investigated under various operating conditions in order to understand the behavior of the stack. The operating variables included the methanol concentration, the flow rate and the flow direction of the reactants (methanol and air) in the stack. The temperature of the stack was autonomously increased in proportion to the magnitude of the electric load, but it decreased with an increase in the flow rates of the reactants. Although the operation of the stack was initiated at room temperature, under a certain condition the internal temperature of the stack was higher than 80 °C. A uniform distribution of the reactants to all the cells was a key factor in determining the performance of the stack. With the supply of 2 M methanol, a maximum power of the stack was found to be 54 W (85 mW cm−2) in air and 98 W (154 mW cm−2) in oxygen. Further, the system with counter-flow reactants produced a power output that was 20% higher than that of co-flow system. A post-load behavior of the stack was also studied by varying the electric load at various operating conditions.  相似文献   

2.
《Journal of power sources》2006,158(2):1256-1261
Passive direct methanol fuel cells have been extensively investigated for the effects of methanol concentration, catalyst loading of electrodes, fuel and oxidant supply modes and long-term operation on their performance. Passive cells to which the reactants, methanol and air, are supplied by natural convection flow without the help of any external devices, have shown very different behavior compared with an actively supplied cell. The optimum methanol concentration and catalyst loading in a passive cell are much higher than those of an active cell. The highest single cell performance was 45 mW cm−2 with a 5 M methanol feed at room temperature and ambient pressure. Forced air to a passive cell was found to have a negative effect on the performance. In addition, experiments have been conducted to find the parameters that affect the long-term operation of a passive cell.  相似文献   

3.
《Journal of power sources》2006,162(2):1232-1235
A vapor fed passive direct methanol fuel cell (DMFC) is proposed to achieve a high energy density by using pure methanol for mobile applications. Vapor is provided from a methanol reservoir to the membrane electrode assembly (MEA) through a vaporizer, barrier and buffer layer. With a composite membrane of lower methanol cross-over and diffusion layers of hydrophilic nanomaterials, the humidity of the MEA was enhanced by water back diffusion from the cathode to the anode through the membrane in these passive DMFCs. The humidity in the MEA due to water back diffusion results in the supply of water for an anodic electrochemical reaction with a low membrane resistance. The vapor fed passive DMFC with humidified MEA maintained 20–25 mW cm−2 power density for 360 h and performed with a 70% higher fuel efficiency and 1.5 times higher energy density when compared with a liquid fed passive DMFC.  相似文献   

4.
《Journal of power sources》2006,159(2):1042-1047
The direct methanol fuel cell (DMFC) is regarded as a promising candidate in portable electronic power applications. Bipolar plate stacks were systematically studied by controlling the operating conditions, and by adjusting the stack structure design parameters, to develop more commercial DMFCs. The findings indicate that the peak power of the stack is influenced more strongly by the flow rate of air than by that of the methanol solution. Notably, the stack performance remains constant even as the channel depth is decreased from 1.0 to 0.6 mm, without loss of the performance in each cell. Furthermore, the specific power density of the stack was increased greatly from ∼60 to ∼100 W l−1 for stacks of 10 and 18 cells, respectively. The current status of the work indicates that the power output of an 18-cell short stack reaches 33 W in air at 70 °C. The outer dimensions of this 18-cell short stack are only 80 mm × 80 mm × 51 mm, which are suitable for practical applications in 10–20 W DMFC portable systems.  相似文献   

5.
《Journal of power sources》2006,155(2):291-296
The effect of the anode flow field design on the performance of an in-house fabricated micro direct methanol fuel cell (μDMFC) with an active area 1.0 cm × 1.0 cm was investigated experimentally. Single serpentine and parallel flow fields consisting of micro channels were tested. The experimental results indicated that the serpentine flow field exhibited significantly higher cell voltages than did the parallel flow field, particularly at high current densities. The study of the effect of channel depth of the serpentine flow field suggested that there exists an optimal channel depth for the same channel width and the same open ratio when the same methanol flow rate is supplied; either shallower or deeper channels will lead to a reduction in the cell performance. Finally, it was demonstrated that performance of the μDMFC with the reactants fed by an active means was insensitive to the cell orientations, which is different from conventional DMFCs with larger flow channels reported in the literature.  相似文献   

6.
《Journal of power sources》2005,145(2):477-484
We propose a new direct methanol fuel cell with a zigzag-folded membrane electrode assembly. This fuel cell is formed by a membrane, which is made up of anode and cathode electrodes on a zigzag-folded sheet, separated by insulation film and current collectors. Individual anodes, cathodes and membranes form a unit cell, which is connected to the adjacent unit cell. The fuel cell can achieve high output voltage through easy in-series connection. Since it is not necessary to connect electrodes, as in the manner of conventional bipolar plates, there is no increase in fabrication cost and no degradation in reliability. The fuel feeds for the anode and cathode are achieved through methanol and air feeds on each electrode, which do not require electricity to run a pump or blower. The experimental cells were formed with an active area of 16 cm × 2 cm on membrane-folded cells. Filter papers with slits were inserted between anodes to improve their methanol supply. A power density of 3 mW cm−2 was obtained at a methanol concentration of 2 M at ambient temperature. The cell power was affected by the slit area on cathode.  相似文献   

7.
《Journal of power sources》2006,157(2):666-673
A hydrogen fuelled, 30 W proton exchange membrane fuel-cell (PEMFC) system is presented that is able to operate at an ambient temperature between −20 and 40 °C. The system, which comprises the fuel-cell stack, pumps, humidifier, valves and blowers is fully characterized in a climatic chamber under various ambient temperatures. Successful cold start-up and stable operation at −20 °C are reported as well as the system behaviour during long-term at 40 °C. A simple thermal model of the stack is developed and validated, and accounts for heat losses by radiation and convection. Condensation of steam is addressed as well as reaction gas depletion. The stack is regarded as a uniform heat source. The electrochemical reaction is not resolved. General design rules for the cold start-up of a portable fuel-cell stack are deduced by the thermal model and are taken into consideration for the design. The model is used for a comparison between active-assisted cold start-up procedures with a passive cold start-up from temperatures below 0 °C. It is found that a passive cold start-up may not be the most efficient strategy. Additionally, the influence of different stack concepts on the start-up behaviour is analysed by the thermal model. Three power classes of PEMFC stacks are compared: a Ballard Mk902 module for automotive applications with 85 kW, the forerunner stack Ballard Mk5 (5 kW) for medium power applications, and the developed OutdoorFC stack (30 W), for portable applications.  相似文献   

8.
《Journal of power sources》2004,133(2):175-180
Adoption of a sintered stainless steel fiber felt was evaluated as gas diffusion backing in air-breathing direct methanol fuel cell (DMFC). By using a sintered stainless steel fiber felt as an anodic gas diffusion backing, the peak power density of an air-breathing DMFC is 24 mW cm−2, which is better than that of common carbon paper. A 30-h-life test indicates that the degraded performance of the air-breathing DMFC is primarily due to the water flooding of the cathode. Twelve unit cells with each has 6 cm2 of active area are connected in series to supply the power to a mobile phone assisted by a constant voltage diode. The maximum power density of 26 mW cm−2 was achieved in the stack, which is higher than that in single cell. The results show that the sintered stainless steel felt is a promising solution to gas diffusion backing in the air-breathing DMFC, especially in the anodic side because of its high electronical conductivity and hydrophilicity.  相似文献   

9.
《Journal of power sources》2006,154(2):394-403
Electrical output behaviour obtained on solid oxide fuel cell stacks, based on planar anode supported cells (50 or 100 cm2 active area) and metallic interconnects, is reported. Stacks (1–12 cells) have been operated with cathode air and anode hydrogen flows between 750 and 800 °C operating temperature. At first polarisation, an activation phase (increase in power density) is typically observed, ascribed to the cathode but not clarified. Activation may extend over days or weeks. The materials are fairly resistant to thermal cycling. A 1-cell stack cycled five times in 4 days at heating/cooling rates of 100–300 K h−1, showed no accelerated degradation. In a 5-cell stack, open circuit voltage (OCV) of all cells remained constant after three full cycles (800–25 °C). Power output is little affected by air flow but markedly influenced by small fuel flow variation. Fuel utilisation reached 88% in one 5-cell stack test. Performance homogeneity between cells lay at ±4–8% for three different 5- or 6-cell stacks, but was poor for a 12-cell stack with respect to the border cells. Degradation of a 1-cell stack operated for 5500 h showed clear dependence on operating conditions (cell voltage, fuel conversion), believed to be related to anode reoxidation (Ni). A 6-cell stack (50 cm2 cells) delivering 100 Wel at 790 °C (1 kWel L−1 or 0.34 W cm−2) went through a fuel supply interruption and a thermal cycle, with one out of the six cells slightly underperforming after these events. This cell was eventually responsible (hot spot) for stack failure.  相似文献   

10.
《Journal of power sources》2006,162(2):1073-1076
A 28-W direct borohydride–hydrogen peroxide fuel-cell stack operating at 25 °C is reported for contemporary portable applications. The fuel cell operates with the peak power-density of ca. 50 mW cm−2 at 1 V. This performance is superior to the anticipated power-density of 9 mW cm−2 for a methanol–hydrogen peroxide fuel cell. Taking the fuel efficiency of the sodium borohydride–hydrogen peroxide fuel cell as 24.5%, its specific energy is ca. 2 kWh kg−1. High power-densities can be achieved in the sodium borohydride system because of its ability to provide a high concentration of reactants to the fuel cell.  相似文献   

11.
《Journal of power sources》2006,157(1):201-206
In direct methanol fuel cells (DMFCs), the optimum characteristics of ion-exchange membranes are investigated at high concentrations of methanol feed up to 7 M by modifying the diffusion coefficient and the ionic conductivity of the polyelectrolyte material. A Nafion membrane is modified by the incorporation of layered double hydroxide (LDH) nanoplatelets with different Mg2+:Al3+ ratios. When the feed concentration of methanol is lower than 3 M, the DMFC is controlled by the ionic conductivity of the polyelectrolyte membrane because methanol cross-over is not relatively significant. When the feed concentration is high, however, the diffusion coefficient of methanol is the key factor that determines the performance of the fuel cell. This is due to a high concentration gradient of methanol across the polyelectrolyte membrane. The open-circuit voltage is increased by the decreased diffusion coefficient in LDH/Nafion nanocomposite membranes at methanol feed concentrations up to 7 M; apparently because methanol cross-over is suppressed by the incorporation of LDH. The maximum power density of the DMFC is determined by the two competing transport processes of ion conduction and methanol diffusion, especially at a relatively high methanol concentration, that can provide optimum operating conditions in the membrane.  相似文献   

12.
《Journal of power sources》2006,159(1):478-483
This study reports the development of planar-type solid oxide fuel cell (SOFC) stacks based on an internal gas manifold and a cross-flow type design. A single-columned, 3-cell, SOFC stack is assembled using 10 cm × 10 cm anode-supported unit cells, metallic interconnects and glass-based compression-seal gaskets. The power-generating characteristics of the unit cell and stack are characterized as a function of temperature. The practical viability of the stack and stack components is investigated via long-term operation and thermal cycling tests. According to performance evaluation at 700 °C, the short stack produces about 100 W in total power at an average cell voltage of around 0.7 V. There are, however, some scale-up problems related to multi-cell stacking. This work addresses key issues in stack fabrication and performance improvement.  相似文献   

13.
《Journal of power sources》2002,112(2):484-490
A 25-kW on-board methanol fuel processor has been developed. It consists of a methanol steam reformer, which converts methanol to hydrogen-rich gas mixture, and two metal membrane modules, which clean-up the gas mixture to high-purity hydrogen. It produces hydrogen at rates up to 25 N m3/h and the purity of the product hydrogen is over 99.9995% with a CO content of less than 1 ppm. In this fuel processor, the operating condition of the reformer and the metal membrane modules is nearly the same, so that operation is simple and the overall system construction is compact by eliminating the extensive temperature control of the intermediate gas streams. The recovery of hydrogen in the metal membrane units is maintained at 70–75% by the control of the pressure in the system, and the remaining 25–30% hydrogen is recycled to a catalytic combustion zone to supply heat for the methanol steam-reforming reaction. The thermal efficiency of the fuel processor is about 75% and the inlet air pressure is as low as 4 psi. The fuel processor is currently being integrated with 25-kW polymer electrolyte membrane fuel-cell (PEMFC) stack developed by the Hyundai Motor Company. The stack exhibits the same performance as those with pure hydrogen, which proves that the maximum power output as well as the minimum stack degradation is possible with this fuel processor. This fuel-cell ‘engine’ is to be installed in a hybrid passenger vehicle for road testing.  相似文献   

14.
In this paper, a new vapor feed fuel delivery system for a passive direct methanol fuel cell (DMFC) is developed and tested. Anode hydrophilic layers, electrical heating power and carbon dioxide release are examined to find their effects on the power density, efficiency and average temperatures of the cell. The hydrophilic layers act as a buffer layer between the vapor chamber and the anode gas diffusion layer (GDL). This layer allows water and methanol to mix, as well as distribute uniformly across the anode surface. Measurement of several parameters such as current, voltage, power, internal resistance, vapor chamber pressure, relative humidity and carbon dioxide concentration are taken. A maximum power density of 33 mW cm?2 is achieved as well as 120 h of continuous operation at a constant current of 50 mA cm?2 using the vapor feed system. The fuel utilization efficiency during the 120 h test is 34.8% and the energy efficiency is 8.2%.  相似文献   

15.
A multi-phase, multi-component, thermal and transient model is applied to simulate the operation of a passive direct methanol fuel cell and optimize the design. The model takes into consideration the thermal effects and the variation of methanol concentration at the feeding reservoir above the fuel cell. Polarization and constant current cases are numerically simulated and compared with experiments for liquid feed concentration, membrane thickness, water management and air management systems. Parameters considered when determining an optimal design include power density, fuel utilization and energy efficiencies and water balance coefficients. An optimal liquid feed concentration is determined to be 2.0 mol kg?1, which achieved a maximum power density of 21 mW cm?2 and a fuel utilization efficiency of 63.0%. An optimal design of a cell uses a thick membrane (Nafion 117) to reduce methanol crossover and two additional cathode GDLs to improve the water balance coefficient and efficiency of the cell. This combination results in a power density of 23.8 mW cm?2 and a water balance coefficient of ?1.71. An air filter may also be added to improve the efficiency and water balance coefficient of the cell, however, a small loss in power density will also occur. Using an Oil Sorbents air filter the water balance coefficient is increased to ?0.85, the fuel utilization efficiency is improved by 27.35% and the maximum power density decreased to 21.6 mW cm?2.  相似文献   

16.
Among the possible systems investigated for energy production with low environmental impact, polymeric electrolyte membrane fuel cells (PEMFCs) are very promising as electrochemical power sources for application in portable technology and electric vehicles. For practical applications, operating FCs at temperatures above 100 °C is desired, both for hydrogen and methanol fuelled cells. When hydrogen is used as fuel, an increase of the cell temperature produces enhanced CO tolerance, faster reaction kinetics, easier water management and reduced heat exchanger requirement. The use of methanol instead of hydrogen as a fuel for vehicles has several practical benefits such as easy transport and storage, but the slow oxidation kinetics of methanol needs operating direct methanol fuel cells (DMFCs) at intermediate temperatures. For this reason, new membranes are required. Our strategy to achieve the goal of operating at temperatures above 120 °C is to develop organic/inorganic hybrid membranes. The first approach was the use of nanocomposite class I hybrids where nanocrystalline ceramic oxides were added to Nafion. Nanocomposite membranes showed enhanced characteristics, hence allowing their operation up to 130 °C when the cell was fuelled with hydrogen and up to 145 °C in DMFCs, reaching power densities of 350 mW cm−2. The second approach was to prepare Class II hybrids via the formation of covalent bonds between totally aromatic polymers and inorganic clusters. The properties of such covalent hybrids can be modulated by modifying the ratio between organic and inorganic groups and the nature of the chemical components allowing to reach high and stable conductivity values up to 6.4 × 10−2 S cm−1 at 120 °C.  相似文献   

17.
A plate-type reactor with 10 channels is designed for methanol steam-reforming and its performance is investigated in the temperature range 210–290 °C. A catalyst coated with zirconia-sol solution in the channels of the reactor exhibits a good adherence with the substrate that is maintained even after reaction including fast feed flow rates at high temperature. Five plate-type reactors are stacked in order to test their performance for methanol steam-reforming. At 270 °C, hydrogen at 3.1 l h−1 is obtained at a feed flow rate of 2.0 g h−1, which corresponds to results for a conventional packed-bed reactor under various reaction conditions.  相似文献   

18.
19.
Recent progress in passive direct methanol fuel cells at KIST   总被引:6,自引:0,他引:6  
This paper describes recent advances in passive direct methanol fuel cells (DMFCs) at the Korea Institute of Science and Technology (KIST). At KIST, we have been developing passive micro-DMFCs with capacities under 5 W that are expected to be used as portable power sources. Research activities are focused on development of membrane–electrode assemblies (MEAs) and design of monopolar stacks operating under passive and air-breathing conditions. The passive cells showed many unique features, much different from the active ones. Single cells with active area of 6 cm2 showed a maximum power density of 40 mW/cm2 at 4 M of methanol concentration at room temperature. A six-cell stack having a total active area of 27 cm2 was constructed in a monopolar configuration and it produced a power output of 1000 mW (37 mW/cm2). Effects of experimental parameters on the performance were also examined to investigate the operation characteristics of single cells and monopolar stacks. Application of micro-DMFCs as portable power sources were demonstrated using small toys and display panels powered by the passive monopolar stacks.  相似文献   

20.
The use of various Nafion membranes, including Nafion 117, 115 and 112 with respective thicknesses of 175 μm, 125 μm and 50 μm, in a passive direct methanol fuel cell (DMFC) was investigated experimentally. The results show that when the passive DMFC operated with a lower methanol concentration (2.0 M), a thicker membrane led to better performance at lower current densities, but exhibited lower performance at higher current densities. When the methanol concentration was increased to 4.0 M, however, the three membranes exhibited similar cell voltages over a wide range of current densities. In contrast, this work also shows the polarization behaviors in an active DMFC when the three membranes were substantially different. Finally, the test of fuel utilization indicates that the passive DMFC with a thicker membrane exhibited higher efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号