首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of power sources》2006,153(2):350-353
Nanoparticle of Li(Ni1/3Co1/3Mn1/3)O2 with size smaller than 40 nm was obtained by non-aqueous system co-precipitation method. The particle morphology and crystal plane orientation were observed by TEM and HRTEM. Electrochemical properties of this nanostructued material were studied with experiment cells. The results show that the material has high capacity of 160 mAh g−1 and excellent rate capability for charge and discharge. For the 50C and 100C rate, its capacity remains above 100 mAh g−1 after tens of cycles.  相似文献   

2.
《Journal of power sources》2006,161(1):601-605
The uniform layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)(OH)2 synthesized by a liquid phase co-precipitation method as precursor. The effects of calcination temperature and time on the structural and electrochemical properties of the Li[Ni1/3Co1/3Mn1/3]O2 were systemically studied. XRD results revealed that the optimal prepared conditions of the layered Li[Ni1/3Co1/3Mn1/3]O2 were 850 °C for 18 h. Electrochemical measurement showed that the sample prepared under the above conditions has the highest initial discharge capacity of 162.1 mAh g−1 and the smallest irreversible capacity loss of 9.2% as well as stable cycling performance at a constant current density of 16 mA g−1 between 3 and 4.3 V versus Li at room temperature.  相似文献   

3.
《Journal of power sources》2006,159(2):1322-1327
The layered LiMn1/3Ni1/3Co1/3O2 cathode materials were synthesized by an oxalate co-precipitation method using different starting materials of LiOH, LiNO3, [Mn1/3Ni1/3Co1/3]C2O4·2H2O and [Mn1/3Ni1/3Co1/3]3O4. The morphology, structural and electrochemical behavior were characterized by means of SEM, X-ray diffraction analysis and electrochemical charge–discharge test. The cathode material synthesized by using LiNO3 and [Mn1/3Ni1/3Co1/3]C2O4·2H2O showed higher structural integrity and higher reversible capacity of 178.6 mAh g−1 in the voltage range 3.0–4.5 V versus Li with constant current density of 40 mA g−1 as well as lower irreversible capacity loss of 12.9% at initial cycle. The rate capability of the cathode was strongly influenced by particle size and specific surface area.  相似文献   

4.
《Journal of power sources》2006,160(1):558-562
Spherical morphology [Ni0.4Co0.2Mn0.4]3O4 materials have been synthesized by ultrasonic spray pyrolysis. The Li[Ni0.4Co0.2Mn0.4]O2 powders were prepared at various pyrolysis temperatures between 500 and 900 °C. The Li[Ni0.4Co0.2Mn0.4]O2 material prepared at a pyrolysis temperature of 600 °C samples are exhibited excellent electrochemical cycling performance and delivered the highest discharge capacity at over 180 mAh g−1 between 2.8 and 4.4 V. The structural, electrochemical, morphological property and thermal stability of the powders were characterized by X-ray diffraction (XRD), galvanostatic charge/discharge testing, scanning electron microscopy (SEM), and differential scanning calorimeter (DSC), respectively.  相似文献   

5.
《Journal of power sources》2006,162(2):1367-1372
The layered Li[Ni(1−x)/3Mn(1−x)/3Co(1−x)/3Mox]O2 cathode materials (x = 0, 0.005, 0.01, and 0.02) were prepared by a solid-state pyrolysis method (700, 800, 850, and 900 °C). Its structure and electrochemical properties were characterized by XRD, SEM, XPS, cyclic voltammetry, and charge/discharge tests. It can be learned that the doped sample of x = 0.01 calcined at 800 °C shows the highest first discharge capacity of 221.6 mAh g−1 at a current density of 20 mA g−1 in the voltage range of 2.3–4.6 V, and the Mo-doped samples exhibit higher discharge capacity and better cycle-ability than the undoped one at room temperature.  相似文献   

6.
《Journal of power sources》2003,123(2):247-252
The electrochemical performance of the layered Li(Ni1/3Co1/3Mn1/3)O2 material have been investigated as a promising cathode for a hybrid electric vehicle (HEV) application. A C/Li(Ni1/3Co1/3Mn1/3)O2 cell, cycled between 2.9 and 4.1 V at 1.5 C rate, does not show any sign of capacity fade up to 100 cycles, whereas at the 5 C rate, a loss of only 18% of capacity is observed after 200 cycles. The Li(Ni1/3Co1/3Mn1/3)O2 host cathode converts from the hexagonal to a monoclinic symmetry at a high state of charge. The cell pulse power capability on charge and discharge were found to exceed the requirement for powering a hybrid HEV. The accelerated calendar life tests performed on C/Li(Ni1/3Co1/3Mn1/3)O2 cells charged at 4.1 V and stored at 50 °C have shown a limited area specific impedance (ASI) increase unlike C/Li(Ni0.8Co0.2)O2 based-cells. A differential scanning calorimetry (DSC) comparative study clearly showed that the thermal stability of Li(Ni1/3Co1/3Mn1/3)O2 is much better than that of Li(Ni0.8Co0.2)O2 and Li(Ni0.8Co0.15Al0.05)O2 cathodes. Also, DSC data of Li(Ni1/3Co1/3Mn1/3)O2 cathode charged at 4.1, 4.3, and 4.6 V are presented and their corresponding exothermic heat flow peaks are discussed.  相似文献   

7.
《Journal of power sources》2006,159(2):1328-1333
Spherical Li[Ni0.8Co0.2−xMnx]O2 (x = 0, 0.1) with phase-pure and well-ordered layered structure have been synthesized by heat-treatment of spherical [Ni0.8Co0.2−xMnx](OH)2 and LiOH·H2O precursors. The structure, morphology, electrochemical properties, and thermal stability of Li[Ni0.8Co0.2−xMnx]O2 (x = 0, 0.1) were studied. The average particle size of the powders was about 10–15 μm and the size distribution was narrow due to the homogeneity of the metal hydroxide [Ni0.8Co0.2−xMnx](OH)2 (x = 0, 0.1). The Li[Ni0.8Co0.2−xMnx]O2 (x = 0, 0.1) delivered a discharge capacity of 197–202 mAh g−1 and showed excellent cycling performance. Compared to Li[Ni0.8Co0.2]O2, Li[Ni0.8Co0.1Mn0.1]O2 exhibited greater thermal stability resulting from improved structural stability due to Mn substitution.  相似文献   

8.
《Journal of power sources》2002,112(2):634-638
Layered Li[Li(1−2x)/3NixMn(2−x)/3]O2 materials with x=0.41, 0.35, 0.275 and 0.2 are synthesized by means of a sol–gel method. The layered structure is stabilized by a solid solution between LiNiO2 and Li2MnO3. The discharge capacity increases with increasing lithium content at the 3a sites in the Li[Li(1−2x)/3NixMn(2−x)/3]O2. A Li[Li0.2Ni0.2Mn0.6]O2 electrode delivers discharge capacities of 200 and 240 mAh g−1 with excellent cycleability at 30 and 55 °C, respectively.  相似文献   

9.
《Journal of power sources》2006,159(2):1458-1463
Ti45Zr35Ni17Cu3 amorphous and single icosahedral quasicrystalline powders were synthesized by mechanical alloying and subsequent annealing at 855 K. Microstructure and electrochemical properties of two alloy electrodes were characterized. When the temperature was enhanced from 303 to 343 K, the maximum discharge capacities increased from 86 to 329 mAh g−1 and 76 to 312 mAh g−1 for the amorphous and quasicrystalline alloy electrodes, respectively. Discharge capacities of two electrodes decrease distinctly with increasing cycle number. The I-phase is stable during charge/discharge cycles, and the main factors for its discharge capacity loss are the increase of the charge-transfer resistance and the pulverization of alloy particles. Besides the factors mentioned above, the formation of TiH2 and ZrH2 hydrides is another primary reason for the discharge capacity loss of the amorphous alloy electrode.  相似文献   

10.
《Journal of power sources》2006,160(1):657-661
The cathode-active materials, layered Li[Ni0.333Co0.333Mn0.293Al0.04]O2−zFz (0  z  0.1), were synthesized from a sol–gel precursor at 900 °C in air. The influence of Al–F co-substitution on the structural and electrochemical properties of the as-prepared samples was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemical experiments. The results showed that Li[Ni0.333Co0.333Mn0.293Al0.04]O2−zFz has a typical hexagonal structure with a single phase, the particle sizes of the samples tended to increase with increasing fluorine content. It has been found that Li[Ni0.333Co0.333Mn0.293Al0.04]O1.95F0.05 showed an improved cathodic behavior and discharge capacity retention compared to the undoped samples in the voltage range of 3.0–4.3 V. The electrodes prepared from Li[Ni0.333Co0.333Mn0.293Al0.04]O1.95F0.05 delivered an initial discharge capacity of 158 mAh−1 g and an initial coulombic efficiency is 91.3%, and the capacity retention at the 20th cycle was 94.9%. Though the F-doped samples had lower initial capacities, they showed better cycle performances compared with F-free samples. Therefore, this is a promising material for a lithium-ion battery.  相似文献   

11.
《Journal of power sources》2006,158(2):1405-1409
A series of Li[CrxLi(1−x)/3Mn2(1−x)/3]O2 (0.15  x  0.3) cathode materials was prepared by citric acid-assisted, sol–gel process. Sub-micron sized particles were obtained and the X-ray diffraction (XRD) results showed that the crystal structure was similar to layered lithium transition metal oxides (R-3m space group). The electrochemical performance of the cathodes was evaluated over the voltage range 2.0–4.9 V at a current density of 7.947 mA g−1. The Li1.27Cr0.2Mn0.53O2 electrode delivered a high reversible capacity of up to 280 mAh g−1 during cycling. Li[CrxLi(1−x)/3Mn2(1−x)/3]O2 yielded a promising cathode material.  相似文献   

12.
The spherical Li[Ni1/3Co1/3Mn1/3]O2 powders with appropriate porosity, small particle size and good particle size distribution were successfully prepared by a slurry spray drying method. The Li[Ni1/3Co1/3Mn1/3]O2 powders were characterized by XRD, SEM, ICP, BET, EIS and galvanostatic charge/discharge testing. The material calcined at 950 °C had the best electrochemical performance. Its initial discharge capacity was 188.9 mAh g−1 at the discharge rate of 0.2 C (32 mA g−1), and retained 91.4% of the capacity on going from 0.2 to 4 C rate. From the EIS result, it was found that the favorable electrochemical performance of the Li[Ni1/3Co1/3Mn1/3]O2 cathode material was primarily attributed to the particular morphology formed by the spray drying process which was favorable for the charge transfer during the deintercalation and intercalation cycling.  相似文献   

13.
《Journal of power sources》2006,163(1):158-165
Electrochemical characteristics of Li/FeS2 batteries having natural pyrite as cathode and liquid electrolytes have been studied at room temperature. The organic electrolytes used were 1 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) in tetra(ethylene glycol) dimethyl ether (TEGDME) or a mixture of TEGDME and 1,3-dioxolane (DOX), and 1 M LiPF6 in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC). The pyrite powder and FeS2 cathode were characterized by SEM, EDS, XRD and charge/discharge cycling. The discharge capacities of Li/FeS2 cells with 1 M LiTFSI dissolved in TEGDME were 772 mAh g−1 at the 1st cycle and 313 mAh g−1 at the 25th cycle at 0.1C. The cycling performance could be improved by using a mixture of TEGDME and DOX as the electrolyte. It was found that TEGDME contributed to high initial discharge capacity, whereas, DOX contributed to better stabilization of the performance. The first discharge capacities of Li/FeS2 cells showed a decreasing trend with higher current densities (615 and 534 mAh g−1, respectively, at 0.5C and 1.0C). Li/FeS2 cells with the battery grade electrolyte 1 M LiPF6 in EC/DMC had lower initial discharge capacity and cycling capability compared to the TEGDME system. The natural pyrite cathode with 1 M LiTFSI dissolved in a mixture of TEGDME and DOX showed reasonably good first discharge capacity and overall cycling performance, suitable for application in room temperature lithium batteries.  相似文献   

14.
《Journal of power sources》2004,136(2):303-306
A thin film of Si was vacuum-deposited onto a 30 μm thick Ni foil from a source of n-type of Si, the film thickness examined being 200–1500 Å. Li insertion/extraction evaluation was performed mainly with cyclic voltammetry (CV) and constant current charge/discharge cycling in propylene carbonate (PC) containing 1 M LiClO4 at ambient temperature. The cycleability and the Li accommodation capacity were found to depend on the film thickness. Thinner films gave larger accommodation capacity. A 500 Å thick Si film gave a charge capacity over 3500 mAh g−1 being maintained during 200 cycles under 2 C charge/discharge rate, while a 1500 Å film revealed around 2200 mAh g−1 during 200 cycles under 1 C rate. The initial charge loss could not be ignored but it could be reduced by controlling the deposition conditions.  相似文献   

15.
《Journal of power sources》2006,158(1):524-528
Sn doped lithium nickel cobalt manganese composite oxide of LiNi3/8Co2/8Mn3/8−xSnxO2 (0  x  0.10) was synthesized by stannum substitute of manganese to enhance its rate capability at first time. Its structure and electrochemical properties were characterized by X-ray diffraction (XRD), SEM, cyclic voltammetry (CV), galvanostatic intermittent titration technique (GITT) and charge/discharge tests. LiNi3/8Co2/8Mn3/8−xSnxO2 had stable layered structure with α-NaFeO2 type as x up to 0.05, meanwhile, its chemical diffusion coefficient DLi of Li-ion was enhanced by almost one order of magnitude, leading to notable improvement of the rate capability of LiNi3/8Co2/8Mn3/8O2. The compound of x = 0.10 showed the best rate capability among Sn doped samples, but its discharge capacity reduced markedly due to secondary phase Li2SnO3 and increase of cation-disorder. The compound with x = 0.05 showed high rate capability with initial discharge capacity in excess of 156 mAh g−1. It is a promising alternative cathode material for EV application of Li-ion batteries.  相似文献   

16.
《Journal of power sources》2005,141(1):156-158
Undoped Mn3O4 shows relatively poor performance as a possible anode material on reversible reaction with lithium. A dramatic increase in cyclability is obtained on partial substitution of Mn by Co. Data are presented for the composition Mn2.6Co0.4O4, which, after the first cycle, shows essentially constant capacity of 400 mAh g−1 at ∼0.6 V.  相似文献   

17.
《Journal of power sources》2006,162(1):629-635
The effects of extra Li content, different synthesis method and sintering temperature on synthesis, structure and electrochemistry of LiCo1/3Ni1/3Mn1/3O2 were investigated. It was shown that extra Li content, homogeneous precursor and a high sintering temperature contributed to the formation of single phase compound. Extra Li content not only accelerated formation of pure phase due to effectively suppressing development of NiO impurity, but also brought about considerable variations in electrochemistry. In the case of x = 1.3 (the molar ratio of Li versus M (M = Co1/3Ni1/3Mn1/3) at starting materials), a plateau-like stage at >4.3 V during the initial charge process was apparently observed, accompanying a remarkably improved initial charge capacity. Different precursors derived from different synthesis methods caused the impressive differences in electrochemistry of LiCo1/3Ni1/3Mn1/3O2. Homogeneous precursors derived from spray-drying method resulted in significantly improved electrochemical performances in contrast with ones obtained by direct decomposition of acetates and even subsequent ball-milling. This may be related to the reduced occupancy of transitional metal ions in Li layers, smaller particles size and possibly good material homogeneity in LiCo1/3Ni1/3Mn1/3O2.  相似文献   

18.
《Journal of power sources》2006,157(1):507-514
The effects of ball-milling on Li insertion into multi-walled carbon nanotubes (MWNTs) are presented. The MWNTs are synthesized on supported catalysts by thermal chemical vapour deposition, purified, and mechanically ball-milled by the high energy ball-milling. The purified MWNTs and the ball-milled MWNTs were electrochemically inserted with Li. Structural and chemical modifications in the ball-milled MWNTs change the insertion–extraction properties of Li ions into/from the ball-milled MWNTs. The reversible capacity (Crev) increases with increasing ball-milling time, namely, from 351 mAh g−1 (Li0.9C6) for the purified MWNTs to 641 mAh g−1 (Li1.7C6) for the ball-milled MWNTs. The undesirable irreversible capacity (Cirr) decreases continuously with increase in the ball-milling time, namely, from 1012 mAh g−1 (Li2.7C6) for the purified MWNTs to 518 mAh g−1 (Li1.4C6) for the ball-milled MWNTs. The decrease in Cirr of the ball-milled samples results in an increase in the coulombic efficiency from 25% for the purified samples to 50% for the ball-milled samples. In addition, the ball-milled samples maintain a more stable capacity than the purified samples during charge–discharge cycling.  相似文献   

19.
《Journal of power sources》2003,124(1):170-173
All-solid-state cells of In/LiNi0.5Mn0.5O2 using a superionic oxysulfide glass with high conductivity at room temperature of 10−3 S cm−1 as a solid electrolyte were fabricated and the cell performance was investigated. Although a large irreversible capacity was observed at the 1st cycle, the solid-state cells worked as lithium secondary batteries and exhibited excellent cycling performance after the 2nd cycle; the cells kept charge–discharge capacities around 70 mAh g−1 and its efficiency was almost 100%. This is the first case to confirm that all-solid-state cells using manganese-based layer-structured cathode materials work as lithium secondary batteries.  相似文献   

20.
《Journal of power sources》2006,157(1):488-493
LiNi0.5Mn0.4M0.1O2 (M = Li, Mg, Al, Co) compound was prepared by a solid-state reaction, and its structural, morphological and electrochemical properties were characterized by XRD, SEM, charge–discharge tests and EIS. The impacts of alien ion introduction on the structural, morphological and electrochemical properties of LiNi0.5Mn0.5O2 depend on the dopants. The substitution of Li, Mg, and Co for Mn can enlarge the particle size and improve the crystallinity. LiNi0.5Mn0.4Li0.1O2 and LiNi0.5Mn0.4Co0.1O2 show increased reversible capacities as well as upgraded rate capabilities. LiNi0.5Mn0.4Li0.1O2 exhibits a retentive capacity of about 200 mAh g−1 at 50 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号