首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The concept of using controlled temperature gradients to non-parasitically remove excess water from porous media during PEFC stack shutdown has been numerically investigated. An integrated modeling approach focusing both at stack and single cell level is presented. The stack thermal model is developed to obtain detailed temperature distribution across the PEFC stack. The two-phase unit fuel cell model is developed to investigate the detailed water and thermal transport in the PEFC components after shutdown, which for the first time includes thermo-osmotic flow in the membrane. The model accounts for capillary and phase-change induced flow in the porous media, and thermo-osmotic and diffusive flow in the polymer membrane. The single cell model is used to estimate the local water distribution with land or channel boundary condition, and the experimentally validated stack thermal model provided the transient temperature boundary conditions. Two different stack designs are compared to quantify the residual water in the stack. Model results indicate that a favorable temperature gradient can be formed in the stack to enhance the water drainage rate, esp. at anode end cell locations, where freeze/thaw damage has been observed to occur.  相似文献   

2.
A model of a polymer electrolyte fuel cell (PEFC) is developed that captures dynamic behaviour for control purposes. The model is mathematically simple, but accounts for the essential phenomena that define PEFC performance. In particular, performance depends principally on humidity, temperature and gas pressure in the fuel cell system. To simulate accurately PEFC operation, the effects of water transport, hydration in the membrane, temperature, and mass transport in the fuel cells system are simultaneously coupled in the model. The PEFC model address three physically distinctive fuel cell components, namely, the anode channel, the cathode channel, and the membrane electrode assembly (MEA). The laws of mass and energy conservation are applied to describe each physical component as a control volume. In addition, the MEA model includes a steady-state electrochemical model, which consists of membrane hydration and the stack voltage models.  相似文献   

3.
We propose a system that combines a seal-less planar solid oxide fuel cell (SOFC) stack and polymer electrolyte fuel cell (PEFC) stack. In the proposed system, fuel for the SOFC (SOFC fuel) and fuel for the PEFC (PEFC fuel) are fed to each stack in parallel. The steam reformer for the PEFC fuel surrounds the seal-less planar SOFC stack. Combustion exhaust heat from the SOFC stack is used for reforming the PEFC fuel. We show that the electrical efficiency in the SOFC–PEFC system is 5% higher than that in a simple SOFC system using only a seal-less planar SOFC stack when the SOFC operation temperature is higher than 973 K.  相似文献   

4.
The temperature of operation is a key parameter in determining the performance and durability of a polymer electrolyte fuel cell (PEFC). Controlling temperature and understanding its distribution and dynamic response is vital for effective operation and design of better systems. The sensitivity to temperature means that uncertainty in this parameter leads to variable response and can mask other factors affecting performance. It is important to be able to determine the impact of temperature uncertainly and quantify how much PEFC operation is influenced under different operating conditions. Here, a simple lumped mathematical model is used to describe PEFC performance under temperature uncertainty. An analytical approach gives a measure of the sensitivity of performance to temperature at different nominal operating temperatures and electrical loadings. Whereas a statistical approach, using Monte Carlo stochastic sampling, provides a ‘probability map’ of PEFC polarisation behaviour. As such, a polarisation ‘area’ or ‘band’ is considered as opposed to a polarisation ‘curve’. Results show that temperature variation has the greatest effect at higher currents and lower nominal operating temperatures. Thermal imaging of a commercial air-cooled stack is included to illustrate the temporal and spatial temperature variation experienced in real systems.  相似文献   

5.
A polymer electrolyte fuel cell (PEFC) is an electrochemical device that converts chemical energy directly to electrical energy, and its performance greatly depends on its operating temperature. Therefore, in this paper, a novel thermodynamic PEFC model with the airflow cooling method is firstly developed for the PEFC system. Then, a novel model predictive control (MPC) controller is designed to control the stack temperature at an optimal value by adjusting the air flow rate on the basis of the developed thermodynamic PEFC model. The thermodynamic PEFC model and the designed controlling strategies are simulated and analysed in Matlab/Simulink. Three tests are conducted to estimate the reliability of the developed controllers concerning different operating conditions: (a) typical perturbation in the current load, (b) any perturbation in the current load, and (c) variation of the ambient temperature. The simulation results demonstrate that the MPC controller can effectively control the stack temperature at the desired value. Moreover, the MPC controller shows much superior effects compared with the conventional proportional integral derivative (PID) controller. In addition, the developed coolant circuit model can be easily applied to various PEFC systems. The MPC controller shows potential also for other controlling issues of PEFC systems due to its strong robustness and fast response.  相似文献   

6.
A solid oxide fuel cell (SOFC)–polymer electrolyte fuel cell (PEFC) combined system was investigated by numerical simulation. Here, the effect of the current densities in the SOFC and the PEFC stacks on the system's performance is evaluated under a constant fuel utilization condition. It is shown that the SOFC–PEFC system has an optimal combination of current densities, for which the electrical efficiency is highest. The optimal combination exists because the cell voltage in one stack increases and that of the other stack decreases when the current densities are changed. It is clarified that there is an optimal size of the PEFC stack in the parallel-fuel-feeding-type SOFC–PEFC system from the viewpoint of efficiency, although a larger PEFC stack always leads to higher electrical efficiency in the series-fuel-feeding-type SOFC–PEFC system. The 40 kW-class PEFC stack is suitable for the 110 kW-class SOFC stack in the parallel-fuel-feeding type SOFC–PEFC system.  相似文献   

7.
《Journal of power sources》2005,144(1):146-151
The life performance must be improved in order to commercialize polymer electrolyte fuel cells (PEFC). A decline of the cell voltage has been found to result from deterioration of the materials and a localization of reaction in the cell. We investigated the localization phenomenon, measuring the current density in the cell. The distribution of current density was measured by divided and isolated electrodes for a long period of operation. At the beginning of generation of electricity, a high current region is observed in the lower gas channel which is relatively humid. However, the high current region gradually moves to the upper dry channel in proportion to the voltage drop, which is remarkable under conditions of low humidity operation. This reaction seems to be reversible, since the PEFC can mostly recover the initial performance, once it is restarted. Improving the MEA and gas separators for low humidified conditions on the basis of this internal analysis, we operated a 20 cells PEFC stack of 0.4 kW for 5000 h and the stack showed −1.5 mV/1000 h of average voltage degradation.  相似文献   

8.
A mathematical model for a polymer electrolyte fuel cell (PEFC) stack with an open-cathode manifold, where a fan provides the oxidant as well as cooling, is derived and studied. In short, the model considers two-phase flow and conservation of mass, momentum, species and energy in the ambient and PEFC stack, as well as conservation of charge and a phenomenological membrane and agglomerate model for the PEFC stack. The fan is resolved as an interfacial condition with a polynomial expression for the static pressure increase over the fan as a function of the fan velocity. The results suggest that there is strong correlation between fan power rating, the height of cathode flow-field and stack performance. Further, the placement of the fan - either in blowing or suction mode - does not give rise to a discernable difference in stack performance for the flow-field considered (metal mesh). Finally, it is noted that the model can be extended to incorporate other types of flow-fields and, most importantly, be employed for design and optimization of forced air-convection open-cathode PEFC stacks and adjacent fans.  相似文献   

9.
The paper reports on the influence of low humidity, short-circuiting, hydrogen starvation and open circuit potential on the performance and service life of 11 kW PEFC stack and 25 cm2 single cell. The failure modes in PEFC stack were caused by series of laboratory and software shortcomings during the tests, while tests in a single PEFC were performed for comparison purpose. Due to the impossibility to predict the influence of the failure modes on PEFC stack performance and durability based solely on the results obtained in a single PEFC demonstrated in the paper and having in mind the cost of a high power PEFC stack there is a lack of systematic knowledge in the field. The failure modes' influence was investigated in detail on the performance of the overall PEFC stack, individually on each membrane electrode assembly (MEA) in the stack and on the single PEFC. The reasons for MEAs failures were explained and recommendations for PEFC stack rehabilitation were given. By analyzing the reasons and shortcomings causing the failure modes the paper also provides information on some specifics in coupling and communication between some conditioning and testing devices.  相似文献   

10.
Inadequate cold start capability impedes the diffusion of fuel cell vehicles in cold regions. While the isothermal cell commonly used in literature is valuable in examining failure mechanism, it is not suitable for exploring startup strategy and the associated degradation of polymer electrolyte fuel cells (PEFCs). A model cell capable of simulating the adiabatic thermal boundary conditions of central cells inside the stack is needed. Herein, we design an adiabatic cell as a model for the central cells in PEFC stack. The adiabatic thermal boundary condition is realized by utilizing thermal adjustment boards, thermocouples, and heating plates. The power of heating plates is adjusted by a feedback proportion-integration-differentiation controller in real time. The system is shown to be capable of providing an adiabatic thermal boundary condition with quick response rate and having no risk of overheating in successful starts with two kinds of strategies. This cell can work as a model system for reproducible and well-controlled study of cold start of PEFC stack.  相似文献   

11.
A general purpose 3D finite element method model has been developed for the estimation of the compression pressure distribution in fuel cell stacks. The model can be used for the optimisation of any type of fuel cell structure at any temperature. The model was validated with pressure sensitive film measurements using PEFC stack components that had low rigidity and were highly deformable.  相似文献   

12.
《Journal of power sources》2004,137(2):206-215
We evaluated the performance of system combining a solid oxide fuel cell (SOFC) stack and a polymer electrolyte fuel cell (PEFC) stack by a numerical simulation. We assume that tubular-type SOFCs are used in the SOFC stack. The electrical efficiency of the SOFC–PEFC system increases with increasing oxygen utilization rate in the SOFC stack. This is because the amount of exhaust heat of the SOFC stack used to raise the temperature of air supplied to it decreases as its oxygen utilization rate increases and because that used effectively as the reaction heat of the steam reforming reaction of methane in the stack reformer increases. The electrical efficiency of the SOFC–PEFC system at 190 kW ac is 59% (LHV), which is equal to that of the SOFC-gas turbine combined system at 1014 kW ac.  相似文献   

13.
A transient, one-dimensional thermal model for a generic polymer electrolyte fuel cell (PEFC) stack is developed to investigate the cold-start ability and the corresponding energy requirement over different operating and ambient conditions. The model is constructed by applying the conservation of energy on each stack component and connecting the component's relevant boundaries to form a continuous thermal model. The phase change of ice and re-circulation of coolant flow are included in the analytical framework and their contribution to the stack thermal mass and temperature distribution of the components is also explored. A parametric study was conducted to determine the governing parameters, relative impact of the thermal mass of each stack component and ice, and anticipated temperature distribution in the stack at start-up for various operating conditions. Results indicate that 20 cells were sufficient to accurately experimentally and computationally simulate the full size stack behavior. It was observed that an optimum range of operating current density exists for a chosen stack design, in which rapid start-up of the stack from sub-zero condition can be achieved. Thermal isolation of the stack at the end plates is recommended to reduce the start-up time. Additionally, an end plate thickness exceeding a threshold value has no added effect on the stack cold-start ability. Effect of various internal and external heating mechanisms on the stack start-up were also investigated, and flow of heated coolant above 0 °C was found to be the most effective way to achieve the rapid start-up.  相似文献   

14.
Transient power demand fluctuations and maintaining high energy density are important for many portable devices. Small fuel cells are potentially good candidates as alternative energy sources for portable applications. Hybrid power sources have some inherent properties which may be effectively utilized to improve the efficiency and dynamic response of the system. In this paper, an improved dynamic model considering the characteristics of the temperature and equivalent internal resistance is presented for proton exchange membrane (PEM) fuel cells. The dynamic behavior of a system with hybrid PEM fuel cells and an ultracapacitor bank is simulated. The hybrid PEM fuel cell/ultracapacitor bank system is used for powering a portable device (such as a laptop computer). The power requirement of a laptop computer varies significantly under different operation conditions. The analytical models of the hybrid system with PEM fuel cells and an ultracapacitor bank are designed and simulated by developing a detailed simulation software using Matlab, Simulink and SimPowerSystems Blockset for portable applications.  相似文献   

15.
The oxygen transport resistance in the cathode catalyst layer (CL) of polymer electrolyte fuel cells (PEFCs) has been reported to be significantly higher than expected, especially when the platinum (Pt) loading is low and/or the degree of CL degradation is severe. In this paper, the oxygen transport resistance behavior in the cathode CL is numerically analyzed under various CL design and operating conditions. Particular emphasis is placed on the aged CL wherein Pt particle growth and active Pt surface area loss are observed. For this study, a previously developed micro-scale catalyst model is improved upon to account for Pt particle size. The new model includes calculations of catalyst activity and electrochemically active surface areas, as well as various transport resistances through the ionomer and liquid films. After coupling the micro-scale CL model with a three-dimensional PEFC model, multi-scale simulations are carried out under various PEFC catalyst designs (varying Pt loading, ionomer fraction, oxygen permeation rate through the ionomer film) and operating conditions (drying or flooding of the electrode, high or lower current density). The simulation results agree well with experimental oxygen transport resistance data and further indicate that CL design with low Pt loading is more susceptible to degradation. Providing extensive multi-dimensional contours of species concentration, temperature, and current density inside the PEFC, this study provides a comprehensive understanding of oxygen transport resistance in the cathode CL in different PEFC situations.  相似文献   

16.
This paper addresses the findings of the European Space Agency (ESA) study (Energy and Provision Management Study), performed by an Italian consortium, aimed at designing and breadboarding of an Energy Provision and Management system (EPM), based on Polymer Electrolyte Fuel Cell (PEFC) technology. The EPM has been developed for supporting space exploration applications, specifically for lunar surface missions. The fuel cell technology has been selected through a trade-off activity, and the power requirements of a Lunar Base (LB) power plant and a Pressurized Lunar Rover (PLR) have been identified. A synergetic design of EPM has been proposed for both the LB and the PLR. Finally three technological demonstrators have been designed, manufactured and tested: i) a 1 kW PEFC stack, ii) a stand-alone power system based on the developed stack, iii) a regenerative power system based on the stand-alone stack connected with a commercial electrolyser. The tests carried out on breadboards, have demonstrated the ability of fuel cell power systems to meet the requirements of future space missions.  相似文献   

17.
The PEFC stack in a commercial power system was operated with room air and pure hydrogen. After the system reached a steady temperature, an ac impedance test was conducted on the fuel cell power system. The impedance data were real-time response generated by the ac sinusoidal excitation. Data for a single PEM stack and PEM stacks operating in parallel and series were collected with or without an embedded system controller board and electronic devices. The equivalent circuit model with three time constants and the non-linear least square fitting program (NLLS) were applied for fitting the stack impedance spectrum. The Levenberg–Marquardt algorithm utilized in the NLLS fitting process automatically adjusted the parameter values of the physical elements in the model to find the best fit result. From the preliminary results, data interpretation and the equivalent circuit model identified the physical elements, the related electrochemical processes, and the phenomenon inside the fuel cells or stacks. Losses from ohmic conduction, anode activation, cathode activation, and mass transfer were separated and analyzed. Further PSpice simulation curves using these equivalent circuit elements demonstrate good agreement with the pulse testing data measured from the PEFC power system.  相似文献   

18.
《Journal of power sources》2006,162(1):502-512
Polymer electrolyte fuel cell (PEFC) systems for light-duty vehicles must be able to start unassisted and rapidly from temperatures below −20 °C. Managing buildup of ice within the porous cathode catalyst and electrode structure is the key to self-starting a PEFC stack from subfreezing temperatures. The stack temperature must be raised above the melting point of ice before the ice completely covers the cathode catalyst and shuts down the electrochemical reaction. For rapid and robust self-start it is desirable to operate the stack near the short-circuit conditions. This mode of operation maximizes hydrogen utilization, favors production of waste heat that is absorbed by the stack, and delays complete loss of effective electrochemical surface area by causing a large fraction of the ice to form in the gas diffusion layer rather than in the cathode catalyst layer. Preheating the feed gases, using the power generated to electrically heat the stack, and operating pressures have only small effect on the ability to self-start or the startup time. In subfreezing weather, the stack shut-down protocol should include flowing ambient air through the hot cathode passages to vaporize liquid water remaining in the cathode catalyst. Self-start is faster and more robust if the bipolar plates are made from metal rather than graphite.  相似文献   

19.
A novel portable electric power generation system, fuelled by ammonia, is introduced and its performance is evaluated. In this system, a solid oxide fuel cell (SOFC) stack that consists of anode-supported planar cells with Ni-YSZ anode, YSZ electrolyte and YSZ-LSM cathode is used to generate electric power. The small size, simplicity, and high electrical efficiency are the main advantages of this environmentally friendly system. The results predicted through computer simulation of this system confirm that the first-law efficiency of 41.1% with the system operating voltage of 25.6 V is attainable for a 100 W portable system, operated at the cell voltage of 0.73 V and fuel utilization ratio of 80%. In these operating conditions, an ammonia cylinder with a capacity of 0.8 l is sufficient to sustain full-load operation of the portable system for 9 h and 34 min. The effect of the cell operating voltage at different fuel utilization ratios on the number of cells required in the SOFC stack, the first- and second-law efficiencies, the system operating voltage, the excess air, the heat transfer from the SOFC stack, and the duration of operation of the portable system with a cylinder of ammonia fuel, are also studied through a detailed sensitivity analysis. Overall, the ammonia-fuelled SOFC system introduced in this paper exhibits an appropriate performance for portable power generation applications.  相似文献   

20.
For development of polymer electrolyte fuel cell (PEFC) lifetime estimation method, a high accuracy PEFC electrode polarization model is required. An electrode polarization model which was previously proposed was verified. However, accuracy of the electrode polarization model was not enough to estimate PEFC performance under various conditions. A new high accuracy PEFC electrode polarization model has been developed based on electrochemical consideration and data observed at elevated pressures. In the cathode polarization model, effects of O2 diffusion and H2O plugging have to be considered to obtain high accuracy for long-term operation. In addition, PEFC performance degradation was analyzed by the electrode polarization model. Main factors of PEFC performance degradation are OCV drop, the cathodic activation polarization, voltage drops by O2 diffusion and H2O plugging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号