首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Li ion polymer battery pack for road vehicles (48 V, 20 Ah) was tested by charging/discharging tests at different current values, in order to evaluate its performance in comparison with a conventional Pb acid battery pack. The comparative analysis was also performed integrating the two storage systems in a hydrogen fuel cell power train for moped applications. The propulsion system comprised a fuel cell generator based on a 2.5 kW polymeric electrolyte membrane (PEM) stack, fuelled with compressed hydrogen, an electric drive of 1.8 kW as nominal power, of the same typology of that installed on commercial electric scooters (brushless electric machine and controlled bidirectional inverter). The power train was characterized making use of a test bench able to simulate the vehicle behaviour and road characteristics on driving cycles with different acceleration/deceleration rates and lengths. The power flows between fuel cell system, electric energy storage system and electric drive during the different cycles were analyzed, evidencing the effect of high battery currents on the vehicle driving range. The use of Li batteries in the fuel cell power train, adopting a range extender configuration, determined a hydrogen consumption lower than the correspondent Pb battery/fuel cell hybrid vehicle, with a major flexibility in the power management.  相似文献   

2.
《Journal of power sources》2005,145(2):610-619
The development of fuel cell electric vehicles requires the on-board integration of fuel cell systems and electric energy storage devices, with an appropriate energy management system. The optimization of performance and efficiency needs an experimental analysis of the power train, which has to be effected in both stationary and transient conditions (including standard driving cycles).In this paper experimental results concerning the performance of a fuel cell power train are reported and discussed. In particular characterization results for a small sized fuel cell system (FCS), based on a 2.5 kW PEM stack, alone and coupled to an electric propulsion chain of 3.7 kW are presented and discussed. The control unit of the FCS allowed the main stack operative parameters (stoichiometric ratio, hydrogen and air pressure, temperature) to be varied and regulated in order to obtain optimized polarization and efficiency curves. Experimental runs effected on the power train during standard driving cycles have allowed the performance and efficiency of the individual components (fuel cell stack and auxiliaries, dc–dc converter, traction batteries, electric engine) to be evaluated, evidencing the role of output current and voltage of the dc–dc converter in directing the energy flows within the propulsion system.  相似文献   

3.
This paper presents the design and simulation validation of two energy management strategies for dual-stack fuel cell electric vehicles. With growing concerns about environmental issues and the fossil energy crisis, finding alternative methods for vehicle propulsion is necessary. Proton exchange membrane (PEM) fuel cell systems are now considered to be one of the most promising alternative energy sources. In this work, the challenge of further improving the fuel economy and extending the driving range of a fuel cell vehicle is addressed by a dual-stack fuel cell system with specific energy management strategies. An efficiency optimization strategy and an instantaneous optimization strategy are proposed. Simulation validation for each strategy is conducted based on a dual-stack fuel cell electric vehicle model which follows the new European driving cycle (NEDC). Simulation results show that a dual-stack fuel cell system with proposed energy management strategies can significantly improve the fuel economy of a fuel cell vehicle and thus lengthen the driving range while being able to keep the start-stop frequency of the fuel cell stack within a reasonable range.  相似文献   

4.
In this paper the results of an experimental study on LiAlH4 (lithium alanate) as hydrogen source for fuel cell propulsion systems are reported. The compound examined in this work was selected as reference material for light metal hydrides, because of its high hydrogen content (10.5 wt.%) and interesting desorption kinetic properties at moderate temperatures. Thermal dynamic and kinetic of hydrogen release from this hydride were investigated using a fixed bed reactor to evaluate the effect of heating procedure, carrier gas flow rate and sample form. The aim of this study was to characterize the lithium alanate decomposition through the reaction steps leading to the formation of Li3AlH6 and LiH. A hydrogen tank was designed and realized to contain pellets of lithium alanate as feeding for a fuel cell propulsion system based on a 2-kW Polymeric Electrolyte Fuel Cell (PEFC) stack. The fuel cell system was integrated into the power train comprising DC-DC converter, energy storage systems and electric drive for moped applications (3 kW). The experiments on the power train were conducted on a test bench able to simulate the vehicle behaviour and road characteristics on specific driving cycles. In particular the efficiencies of individual components and overall power train were analyzed evidencing the energy requirements of the hydrogen storage material.  相似文献   

5.
This paper focuses on energy management in an ultra-energy efficient vehicle powered by a hydrogen fuel cell with rated power of 1 kW. The vehicle is especially developed for the student competition Shell Eco-marathon in the Urban Concept category. In order to minimize the driving energy consumption a simulation model of the vehicle and the electric propulsion is developed. The model is based on vehicle dynamics and real motor efficiency as constant DC/DC, motor controllers and transmission efficiency were considered. Based on that model five propulsion schemes and driving strategies were evaluated. The fuel cell output parameters were experimentally determined. Then, the driving energy demand and hydrogen consumption was estimated for each of the propulsion schemes. Finally, an experimental study on fuel cell output power and hydrogen consumption was conducted for two propulsion schemes in case of hybrid and non-hybrid power source. In the hybrid propulsion scheme, supercapacitors were used as energy storage as they were charged from the fuel cell with constant current of 10 A.  相似文献   

6.
Hybrid electric power systems based on fuel cell stack and energy storage sources like batteries and ultracapacitors are a plausible solution to vehicle electrification due to their balance between acceleration performance and range. Having a high degree of hybridization can be advantageous, considering the different characteristics of the power sources. Some parameters to be considered are: specific power and energy, energy and power density, lifetime, cost among others. Ultracapacitors (UC) are of particular interest in electric vehicle applications due to its high-power capability, which is commonly required during acceleration. UCs are commonly used without a power electronics interface due to the high-power processing requirement. Although connecting UCs directly to the DC bus, without using a power converter, presents considerable advantages, the main disadvantage is related to the UC energy-usage capability, which is limited by constant DC bus control. This paper proposes a novel energy-management strategy based on a fuzzy inference system, for fuel-cell/battery/ultracapacitor hybrid electric vehicles. The proposed strategy is able to control the charge and discharge of the UC bank in order to take advantage of its energy storage capability. Experimental results show that the proposed strategy reduces the waste of energy due to dynamic brake in 14%. This represents a reduction in energy consumption from 218 Wh/km to 192 Wh/km for the same driving conditions. By using the proposed energy management strategy, the estimated fuel efficiency in miles per gallon equivalent was also increase from 96 mpge to 109 mpge.  相似文献   

7.
An experimental study was carried out on a fuel cell propulsion system for minibus application with the aim to investigate the main issues of energy management within the system in dynamic conditions. The fuel cell system (FCS), based on a 20 kW PEM stack, was integrated into the power train comprising DC–DC converter, Pb batteries as energy storage systems and asynchronous electric drive of 30 kW. As reference vehicle a minibus for public transportation in historical centres was adopted. A preliminary experimental analysis was conducted on the FCS connected to a resistive load through a DC–DC converter, in order to verify the stack dynamic performance varying its power acceleration from 0.5 kW s−1 to about 4 kW s−1. The experiments on the power train were conducted on a test bench able to simulate the vehicle parameters and road characteristics on specific driving cycles, in particular the European R40 cycle was adopted as reference. The “soft hybrid” configuration, which permitted the utilization of a minimum size energy storage system and implied the use of FCS mainly in dynamic operation, was compared with the “hard hybrid” solution, characterized by FCS operation at limited power in stationary conditions. Different control strategies of power flows between fuel cells, electric energy storage system and electric drive were adopted in order to verify the two above hybrid approaches during the vehicle mission, in terms of efficiencies of individual components and of the overall power train.  相似文献   

8.
Energy management of a fuel cell/ultracapacitor hybrid power system aims to optimize energy efficiency while satisfying the operational constraints. The current challenges include ensuring that the non-linear dynamics and energy management of a hybrid power system are consistent with state and input constraints imposed by operational limitations. This paper formulates the requirements for energy management of the hybrid power system as a constrained optimal-control problem, and then transforms the problem into an unconstrained form using the penalty-function method. Radial-basis-function networks are organized in an adaptive optimal-control algorithm to synthesize an optimal strategy for energy management. The obtained optimal strategy was verified in an electric vehicle powered by combining a fuel-cell system and an ultracapacitor bank. Driving-cycle tests were conducted to investigate the fuel consumption, fuel-cell peak power, and instantaneous rate of change in fuel-cell power. The results show that the energy efficiency of the electric vehicle is significantly improved relative to that without using the optimal strategy.  相似文献   

9.
Efficiencies of hydrogen storage systems onboard fuel cell vehicles   总被引:2,自引:1,他引:2  
Energy efficiency, vehicle weight, driving range, and fuel economy are compared among fuel cell vehicles (FCV) with different types of fuel storage and battery-powered electric vehicles. Three options for onboard fuel storage are examined and compared in order to evaluate the most energy efficient option of storing fuel in fuel cell vehicles: compressed hydrogen gas storage, metal hydride storage, and onboard reformer of methanol. Solar energy is considered the primary source for fair comparison of efficiencies for true zero emission vehicles. Component efficiencies are from the literature. The battery powered electric vehicle has the highest efficiency of conversion from solar energy for a driving range of 300 miles. Among the fuel cell vehicles, the most efficient is the vehicle with onboard compressed hydrogen storage. The compressed gas FCV is also the leader in four other categories: vehicle weight for a given range, driving range for a given weight, efficiency starting with fossil fuels, and miles per gallon equivalent (about equal to a hybrid electric) on urban and highway driving cycles.  相似文献   

10.
This paper presents an experimental assessment of fuel cell hybrid propulsion systems for scooters based on a modular 1.2 kW PEM fuel cell. The tests of the hybrid system are carried out using a programmable electronic load. Different configurations of the fuel cell/battery and the fuel cell/supercapacitor hybrid systems are explored. Both systems demonstrate their ability to deliver the requested load satisfactorily. The distributions of the fuel cell power delivery, although different between the two systems, are within the region where the fuel cell efficiency is approximately constant. As a result, the rates of fuel consumption show no discernable difference between the two systems for all three driving cycles considered. In addition to the fuel consumption, considerations including bus voltage, cost and packaging issues suggest that the supercapacitor has advantages over the battery for the use as secondary energy storage in fuel cell hybrid propulsion system for scooters.  相似文献   

11.
This paper discusses the impacts of different power management strategies on a fuel-cell vehicle. The study was carried out in three steps: fuel-cell control, power management, and system integration and verification. First, we identified the models of a proton exchange membrane fuel-cell (PEMFC) and designed robust controllers to improve the PEMFC's performance and efficiency. Second, we developed two power management structures—a serial power train and a parallel power train—which consisted of the PEMFC and secondary batteries to provide sustainable power for an electric mobility scooter. Lastly, we used the scooter's driving cycles to compare the performance and efficiency of these two power trains. Then we implemented the power trains on a microprocessor for road test. Based on the results, both power trains are deemed effective in providing continuous power for driving the scooter. In addition, the serial power train, although it uses an extra battery set, is shown to be more efficient than the parallel one.  相似文献   

12.
The fuel-cell powered bus is becoming the favored choice for electric vehicles because of its extended driving range, zero emissions, and high energy conversion efficiency when compared with battery-operated electric vehicles. In China, a demonstration program for the fuel cell bus fleet operated at the Beijing Olympics in 2008 and the Shanghai Expo in 2010. It is necessary to develop comprehensive proton exchange membrane fuel cell (PEMFC) diagnostic tools to increase the reliability of these systems. It is especially critical for fuel-cell city buses serving large numbers of passengers using public transportation. This paper presents a diagnostic analysis and implementation study based on the signed directed graph (SDG) method for the fuel-cell system. This diagnostic system was successfully implemented in the fuel-cell bus fleet at the Shanghai Expo in 2010.  相似文献   

13.
This paper develops an exchangeable fuel-cell power module that is replaceable on different light electric vehicles (LEVs). The module consists of a proton exchange membrane fuel-cell (PEMFC) and two battery sets, which provide continuous power for LEVs. The study includes three topics: fuel-cell control, power management, and system modularization and vehicle integration. First, we design robust controllers for the PEMFC to provide a steady voltage or current for charging the battery sets. Second, we develop a serial power train that can provide continuous power for driving the vehicle motors. Third, we modularize a power system that can be easily implemented on different LEVs. We build the system on Matlab™ SimPowerSystem for simulation before road tests, and integrate the power module onto a mobility car and an electric motorbike for experimental verification. Based on the results, the proposed systems are deemed effective.  相似文献   

14.
The target of Shell Eco‐marathon competition of vehicle is to drive a fixed distance with the lowest quantity of fuel. To win the competition, the fuel cell‐powered propulsion system needs to be ultra efficient since the fuel cell system and transmission system are the key effects on the performance of the fuel cell‐powered propulsion system. In this study, a high‐efficiency fuel cell propulsion system has been designed and integrated in a prototype vehicle to participate the Shell Eco‐marathon Asia 2018 race. To achieve that, the vehicle dynamic is modeled to make the selection of the key components, and some experiments have been conducted to obtain the properly vehicle driving strategy. Based on the results of vehicle dynamic analysis, a high specific power proton‐exchange membrane fuel cell (PEMFC) stack with 1000 W and a high‐performance direct current (DC) brushless motor (1000 W) are selected to build the propulsion system of the Shell Eco‐marathon vehicle. Based on the experimental result, the racing time (1300‐1440 seconds) and varied range of racing speed (23‐27 km/h) are selected as the driving strategy. Finally, the efficiency of the fuel cell‐powered vehicle is analyzed. In the race at the year of 2018, the designed vehicle won the first place.  相似文献   

15.
This paper presents a model of a hybrid electric vehicle, based on a primary proton exchange membrane fuel cell (PEMFC) and an auxiliary Li-ion battery, and its dynamics and overall performance. The power voltage from the fuel cell is regulated by a DC/DC converter before integrating with the Li-ion battery, which provides energy to the drive motor. The driving force for propelling the wheels comes from a permanent magnet synchronous motor (PMSM); where the power passes through the transmission, shaft, and the differential.  相似文献   

16.
Proton exchange membrane fuel cell (PEMFC) electric vehicle is an effective solution for improving fuel efficiency and onboard emissions, taking advantage of the high energy density and short refuelling time. However, the higher cost and short life of the PEMFC system and battery in an electric vehicle prohibit the fuel cell electric vehicle (FCEV) from becoming the mainstream transportation solution. The fuel efficiency-oriented energy management strategy (EMS) cannot guarantee the improvement of total operating costs. This paper proposes an EMS to minimize the overall operation costs of FCEVs, including the cost of hydrogen fuel, as well as the cost associated with the degradations of the PEMFC system and battery energy storage system (ESS). Based on the PEMFC and battery performance degradation models, their remaining useful life (RUL) models are introduced. The control parameters of the EMS are then optimized using a meta-model based global optimization algorithm. This study presents a new optimal control method for a large mining truck operating on a real closed-road operation cycle, using the combined energy efficiency and performance degradation cost measures of the PEMFC system and lithium-ion battery ESS. Simulation results showed that the proposed EMS could improve the total operating costs and the life of the FCEV.  相似文献   

17.
This paper compares the manufacturing and refueling costs of a fuel-cell vehicle (FCV) and a battery electric vehicle (BEV) using an automobile model reflecting the largest segment of light-duty vehicles. We use results from widely-cited government studies to compare the manufacturing and refueling costs of a BEV and a FCV capable of delivering 135 hp and driving approximately 300 miles. Our results show that a BEV performs far more favorably in terms of cost, energy efficiency, weight, and volume. The differences are particularly dramatic when we assume that energy is derived from renewable resources.  相似文献   

18.
The attention on green and clean technology innovations is highly demanded of a modern era. Transportation has seen a high rate of growth in today's cities. The conventional internal combustion engine‐operated vehicle liberates gasses like carbon dioxide, carbon monoxide, nitrogen oxides, hydrocarbons, and water, which result in the increased surface temperature of the earth. One of the optimum solutions to overcome fossil fuel degrading and global warming is electric vehicle. The challenging aspect in electric vehicle is its energy storage system. Many of the researchers mainly concentrate on the field of storage device cost reduction, its age increment, and energy densities' improvement. This paper explores an overview of an electric propulsion system composed of energy storage devices, power electronic converters, and electronic control unit. The battery with high‐energy density and ultracapacitor with high‐power density combination paves a way to overcome the challenges in energy storage system. This study aims at highlighting the various hybrid energy storage system configurations such as parallel passive, active, battery–UC, and UC–battery topologies. Finally, energy management control strategies, which are categorized in global optimization, are reviewed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Aiming to address the hydrogen economy and system efficiency of a fuel cell hybrid electric vehicle, this paper proposes comparison research of battery size optimization and an energy management strategy. One approach is based on a bi-loop dynamic programming strategy, which selects the optimal one by initializing the battery parameters in the outer loop and performs energy distribution in the inner loop. The other approach is a framework based on convex programming, which can simultaneously design energy management strategies and optimize battery size. In the dynamic programming algorithm, the influence of the different discrete steps of state variables on the results is analysed, and a discrete step that can guarantee the accuracy of the algorithm and reduce computational time is selected. The results based on the above two algorithms and considering the transient response limitations of the fuel cell are analysed as well. Finally, two driving cycles are chosen to verify and compare the performance of the proposed methodology. Simulation results show that the dynamic programming-based energy management strategy and battery size provide more accurate results, and the transient response of the fuel cell has little effect on the optimization results of the battery size and energy management strategies.  相似文献   

20.
《Journal of power sources》2005,141(1):108-115
This paper described the development of a fuel cell system and its integration into the lightweight vehicle known as the Mingdao hydrogen vehicle (MHV). The fuel cell system consists of a 5-kW proton exchange membrane fuel cell (PEMFC), a microcontroller and other supported components like a compressed hydrogen cylinder, blower, solenoid valve, pressure regulator, water pump, heat exchanger and sensors. The fuel cell not only propels the vehicle but also powers the supporting components. The MHV performs satisfactorily over a hundred-kilometer drive thus validating the concept of a fuel cell powered zero-emission vehicle. Measurements further show that the fuel cell system has an efficiency of over 30% at the power consumption for vehicle cruise, which is higher than that of a typical internal combustion engine. Tests to improve performance such as speed enhancement, acceleration and fuel efficiency will be conducted in the future work. Such tests will consist of hybridizing with a battery pack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号