首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of power sources》2006,163(1):433-439
The fabrication and properties of a hybrid membrane based on cesium salt of heteropoly acid, zirconium phosphate and polyvinyl alcohol are described. The fabricated membranes were characterized for their intra molecular interaction, thermal stability, surface morphology, water content and surface-charge properties using Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), water uptake and ion-exchange capacity measurements. These membranes showed reduced methanol crossover (for possible application in DMFC) relative to that of Nafion® 115. At 50% of relative humidity, the protonic conductivity of the hybrid membranes was in the range of 10−3 to 10−2 S cm−1. The feasibility of these hybrid membranes as proton conducting electrolyte in direct methanol fuel cell (DMFC) was investigated and preliminary results are compared with that of Nafion® 115. A maximum power density of 6 mW cm−2 with PVA–ZrP–Cs2STA hybrid membrane was obtained with the cell operated in passive mode at 373 K and atmospheric pressure. Open circuit voltage of the cell operated with hybrid membranes are high compared to that of Nafion® 115 indicating reduced methanol crossover.  相似文献   

2.
《Journal of power sources》2006,161(1):99-105
Proton exchange membranes (PEMs) were prepared by pre-irradiation induced grafting of styrene (S) or styrene/divinylbenzene (S/DVB) into the radiation-crosslinked polytetrafluoroethylene (RX-PTFE) films and then sulfonated. The thicknesses of the obtained PEMs were lower than 20 μm and the ion exchange capacity (IEC) values were around 2 meq g−1. The surfaces of the PEMs and carbon electrodes were coated with Nafion® dispersion, and then membrane electrode assembles (MEAs) were prepared by hot-pressing them together. A MEA based on a Nafion® 112 membrane was also prepared under same procedure for comparison. The performances of the MEAs in a single cell were tested under different cell temperatures and humidifications. Electrochemical impedance spectra (EIS) were measured with ac frequencies which ranged from 100 kHz to 1 Hz at a dc density of 0.5 A cm−2. The obtained impedance curves in Nyquist representation were semicircular.  相似文献   

3.
《Journal of power sources》2006,158(1):137-142
Sulfonic-functionalized heteropolyacid–SiO2 nanoparticles were synthesized by grafting and oxidizing of a thiol-silane compound onto the heteropolyacid–SiO2 nanoparticle surface. The surface functionalization was confirmed by solid-state NMR spectroscopy. The composite membrane containing the sulfonic-functionalized heteropolyacid–SiO2 nanoparticles was prepared by blending with Nafion® ionomer. TG–DTA analysis showed that the composite membrane was thermally stable up to 290 °C. The DMFC performance of the composite membrane increased the operating temperature from 80 to 200 °C. The function of the sulfonic-functionalized heteropolyacid–SiO2 nanoparticles was to provide a proton carrier and act as a water reservoir in the composite membrane at elevated temperature. The power density was 33 mW cm−2 at 80 °C, 39 mW cm−2 at 160 °C and 44 mW cm−2 at 200 °C, respectively.  相似文献   

4.
《Journal of power sources》2006,155(2):111-117
Sulfonated poly(phthalazinone ether ketone) (sPPEK) with a degree of sulfonation of 1.23 was mixed with silica nanoparticles to form hybrid materials for using as proton exchange membranes. The nanoparticles were found homogeneously dispersed in the polymer matrix and a high 30 phr (parts per hundred resin) loading of silica nanoparticles can be achieved. The hybrid membranes exhibited improved swelling behavior, thermal stability, and mechanical properties. The methanol crossover behavior of the membrane was also depressed such that these membranes are suitable for a high methanol concentration in feed (3 M) in cell test. The membrane with 5 phr silica nanoparticles showed an open cell potential of 0.6 V and an optimum power density of 52.9 mW cm−2 at a current density of 264.6 mA cm−2, which is better than the performance of the pristine sPPEK membrane and Nafion® 117.  相似文献   

5.
《Journal of power sources》2002,110(1):144-151
In order to identify a proton-conducting polymer membrane suitable for replacing Nafion® 117 in direct methanol fuel cells (DMFC), we prepared a cross-linked copolymer of hydrophilic 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and 2-hydroxyethyl methacrylate (HEMA). Fumed silicas were also added in an attempt to increase the amount of water adsorbed by the membrane and to enhance water retention. Hydrated copolymer membranes adsorbed significantly more water than Nafion® 117, but were no better at retaining water during drying under ambient conditions. Films composed of 4% AMPS—96% HEMA had a room temperature proton conductivity of 0.029 S cm−1, which increased to 0.06 S cm−1 at 80 °C.  相似文献   

6.
《Journal of power sources》2006,155(2):286-290
The interfacial structure between an electrolyte membrane and an electrode catalyst layer plays an important role in determining performance of proton exchange membrane fuel cell (PEMFC) since the electrochemical reactions produce electricity occur on the interfaces that are in contact with hydrogen or oxygen gas, so-called three phase boundaries. To improve performance of the PEMFC by enlarging effective area of the interfaces, surface of Nafion® 115 membrane was roughened by Ar+ ion beam bombardment before being coated with a catalyst ink to form the electrode layer. With increasing ion dose density from 0 to 1 × 1017 ions cm−2, roughness and hydrophobicity of the membrane surface increased, which could be favored for a high-performance PEMFC. In fuel cell tests, the single cell using Nafion® membrane bombarded at an ion dose density of 1016 ions cm−2 exhibited maximum power density of 0.62 W cm−2, which was two times higher than that of the single cell employing untreated Nafion® 115 membrane, i.e. 0.30 W cm−2.  相似文献   

7.
《Journal of power sources》2006,158(2):1270-1281
Sulfonated polystyrene-type membranes were synthesized by plasma polymerization of a mixture of styrene and trifluoromethane sulfonic acid monomers in a low-frequency after-glow discharge plasma reactor. Such a deposition process enables the preservation of the monomers structure, which was confirmed by mass spectrometry analysis. The synthesized plasma-polymerized membranes are dense and uniform with a few microns thickness. Their structure determined by Fourier-transform infra-red spectroscopy and X-ray photoelectron spectroscopy is very rich in sulfonic acid groups (up to 5%) and stable up to 120 °C. Even if their intrinsic proton conductivity is low (10−1 mS cm−1), directly related to their disorganized and highly cross-linked structure, plasma-polymerized membranes present a proton conduction ability similar to Nafion® because of their low thickness. Due to their highly cross-linked structure, these membranes enable a reduction of the methanol crossover in a factor 10 by comparison with Nafion®. Thus, the integration of plasma-polymerized films in miniaturized direct methanol fuel cells as proton-exchange membranes seems promising.  相似文献   

8.
《Journal of power sources》2006,154(1):138-144
Operating a proton exchange membrane (PEM) fuel cell at elevated temperatures (above 100 °C) has significant advantages, such as reduced CO poisoning, increased reaction rates, faster heat rejection, easier and more efficient water management and more useful waste heat. Catalyst materials and membrane electrode assembly (MEA) structure must be considered to improve PEM fuel cell performance. As one of the most important electrode design parameters, Nafion® content was optimized in the high-temperature electrodes in order to achieve high performance. The effect of Nafion® content on the electrode performance in H2/air or H2/O2 operation was studied under three different operation conditions (cell temperature (°C)/anode (%RH)/cathode (%RH)): 80/100/75, 100/70/70 and 120/35/35, all at atmospheric pressure. Different Nafion® contents in the cathode catalyst layers, 15–40 wt%, were evaluated. For electrodes with 0.5 mg cm−2 Pt loading, cell voltages of 0.70, 0.68 and 0.60 V at a current density of 400 mA cm−2 were obtained at 35 wt% Nafion® ionomer loading, when the cells were operated at the three test conditions, respectively. Cyclic voltammetry was conducted to evaluate the electrochemical surface area. The experimental polarization curves were analyzed by Tafel slope, catalyst activity and diffusion capability to determine the influence of the Nafion® loading, mainly associated with the cathode.  相似文献   

9.
Powder of nanosized particles of Ru-based (Rux, RuxSey and RuxFeySez) clusters were prepared as catalysts for oxygen reduction in 0.5 M H2SO4 and for fuel cells prepared by pyrolysis in organic solvent. These electrocatalysts show a high uniformity of agglomerated nanometric particles. The reaction kinetics were studied using rotating disk electrodes and an enhanced catalytic activity for the powders containing selenium and iron was observed. The Ru-based electrocatalysts were used as the cathode in a single prototype PEM fuel cell, which was prepared by spray deposition of the catalyst on the surface of Nafion® 117 membranes. The electrochemical performance of each single fuel cell was compared to that of a platinum/platinum conventional membrane electrode assembly (MEA), using hydrogen and oxygen feed streams. A maximum power density of 140 mW cm−2, at 80 °C with 460 mA cm−2 was obtained for the RuxFeySez catalysts; approximately 55% lower power density than that obtained with platinum.  相似文献   

10.
《Journal of power sources》2006,154(1):198-201
In this paper, we demonstrate a new way of making low-cost miniature fuel cells for portable applications based on proton conducting porous silicon membranes. Our solution consists in the chemical grafting of silane molecules containing ionizable groups on the pores walls to mimic the structure of ionomer, such as Nafion®, usually used to ensure the proton conductivity of PEM fuel cells. We obtain an inorganic, dimensionally stable, proton conducting membrane with many optimizable parameters such as the pore size, the pore structure of the membrane and the nature of the grafted molecules. Moreover, the use of a silicon substrate offers advantages of serial and parallel integration, the possibility of encapsulation by wafer bonding and gas feed and electrical contacts can be included into the membrane etching process thanks to simple KOH wet etching processes and metal sputtering. A power density of 17 mW cm−2 was obtained.  相似文献   

11.
《Journal of power sources》2005,140(1):103-110
In the present work, the changes of Nafion®-115 membrane porosity in the presence of ethanol aqueous solutions of different concentrations were determined by weighing vacuum-dried and ethanol solution-equilibrated membranes. It was found that membrane porosity increases as ethanol concentration increases. Membrane electrode assemblies (MEAs) have been prepared by following both the conventional and the decal transfer method. The ethanol crossover through these two MEAs was electrochemically quantified by a voltammetric method. A 10 h stability test of direct ethanol fuel cell (DEFC) at a current density of 50 mA cm−2 was carried out. It was found that the electrode preparation procedure has an obvious effect on ethanol crossover and direct ethanol fuel cell's performance and stability. The single DEFC test results showed that about 15 and 34% of the original peak power density was lost after 10 h of life test for the MEAs prepared by the decal transfer method and the conventional method, respectively. Electrochemical impedance spectrum (EIS) results of the MEAs showed that, in the case of the membrane electrode assembly prepared by the following decal transfer method, the internal cell resistance was almost the same, 0.236 Ω cm2 before the life test and 0.239 Ω cm2 after 10 h of life test, while the respective values for the membrane electrode assembly by the conventional method are 0.289 and 0.435 Ω cm2. It is supposed that the improved cell performance with MEA by the decal transfer method could be resorted to both a better contact between the catalyst layer and the electrolyte membrane and higher catalyst utilization. Furthermore, based on the experimental results, the increased internal cell resistance and the degraded single DEFC performance could be attributed to the delamination of the catalyst layer from the electrolyte membrane.  相似文献   

12.
《Journal of power sources》2006,158(2):1344-1347
A stability test on direct methanol fuel cells (DMFCs) was carried out at current densities of 100, 150, and 200 mA cm−2. Each test lasted for 145 h in the three cases. X-ray diffraction, energy dispersive spectroscopy, and scanning electron microscopy were used for analysis of the membrane electrode assemblies (MEAs). The maximum power densities were 93.9, 79.9, and 55.1% of the initial value after operation at 100, 150, and 200 mA cm−2, respectively. A PtRu black catalyst with an original particle size of 3.3 nm was used for the anode electrode. For the MEAs operated at 100, 150, and 200 mA cm−2, the PtRu particle sizes increased from the original size to 3.4, 3.9, and 4.2 nm, respectively, while a Pt black catalyst used for the cathode electrode did not change in size. Dissolution of the Ru was observed, and the ratio of (Pt:Ru) changed from (53:47) in the case of the fresh MEA, to (54:46), (56:44), and (73:27) for the MEAs after operation at 100, 150, and 200 mA cm−2, respectively. The equivalent weight of the NafionTM membrane increased from a weight of 1264 g for a fresh membrane, to a weight of 1322, 1500, and 1945 g with the increases in operating current density to 100, 150, and 200 mA cm−2, respectively.  相似文献   

13.
Formic acid fuel cells offer exciting prospects for powering portable electronic and MEMS devices. Pd-based catalysts further improve the performance of direct formic acid fuel cells while reducing catalyst costs over Pt-based catalysts. This study investigates several Pd-based catalysts, both unsupported and carbon-supported, and compares the electrochemical results with results obtained in an operating fuel cell. Power densities of up to 260 mW cm−2 were achieved in a fuel cell at 750 mA operating at 30 °C. Carbon-supported catalysts and addition of other metals, such as gold, show potential in further improving the performance of Pd-based catalysts.  相似文献   

14.
《Journal of power sources》2007,164(2):567-571
In order to develop high performance intermediate temperature (<800 °C) solid oxide fuel cells (SOFCs) with a lower fabrication cost, a pressurized spray process of ceramic suspensions has been established to prepare both dense yttria-stabilized zirconia (YSZ) electrolyte membranes and transition anode layers on NiO + YSZ anode supports. A single cell with 10 μm thick YSZ electrolyte on a porous anode support and ∼20 μm thick cathode layer showed peak power densities of only 212 mW cm−2 at 700 °C and 407 mW cm−2 for 800 °C. While a cell with 10 μm thick YSZ electrolyte and a transition layer on the porous anode support using a ultra-fine NiO + YSZ powder showed peak power densities of 346 and 837 mW cm−2 at 700 and 800 °C, respectively. The dramatic improvement of cell performance was attributed to the much improved anode microstructure that was confirmed by both scanning electron microscopes (SEM) observation and impedance spectroscopy. The results have demonstrated that a pressurized spray coating is a suitable technique to fabricate high performance SOFCs and at lower cost.  相似文献   

15.
《Journal of power sources》2005,141(2):250-257
Proton exchange membrane (PEM) fuel cells with optimized cathode structures can provide high performance at higher temperature (120 °C). A “pore-forming” material, ammonium carbonate, applied in the unsupported Pt cathode catalyst layer of a high temperature membrane electrode assembly enhanced the catalyst activity and minimized the mass-transport limitations. The ammonium carbonate amount and Nafion® loading in the cathode were optimized for performance at two conditions: 80 °C cell temperature with 100% anode/75% cathode R.H. and 120 °C cell temperature with 35% anode/35% cathode R.H., both under ambient pressure. A cell with 20 wt.% ammonium carbonate and 20 wt.% Nafion® operating at 80 °C and 120 °C presented the maximum cell performance. Hydrogen/air cell voltages at a current density of 400 mA cm−2 using the Ionomem/UConn membrane as the electrolyte with a cathode platinum loading of 0.5 mg cm−2 were 0.70 V and 0.57 V at the two conditions, respectively. This was a 19% cell voltage increase over a cathode without the “pore-forming” ammonium carbonate at the 120 °C operating condition.  相似文献   

16.
《Journal of power sources》2006,160(1):97-104
The performance of a single-cell direct methanol fuel cell (DMFC) using carbon nanotube-supported Pt–Ru (Pt–Ru/CNT) as an anode catalyst has been investigated. In this study, the Pt–Ru/CNT electrocatalyst was successfully synthesized using a modified polyol approach with a controlled composition very close to 20 wt.%Pt–10 wt.%Ru, and the anode was prepared by coating Pt–Ru/CNT electrocatalyst on a wet-proof carbon cloth substrate with a metal loading of about 4 mg cm−2. A commercial gas diffusion electrode (GDE) with a platinum black loading of 4 mg cm−2 obtained from E-TEK was employed as the cathode. The membrane electrode assembly (MEA) was fabricated using Nafion® 117 membrane and the single-cell DMFC was assembled with graphite endplates as current collectors. Experiments were carried out at moderate low temperatures using 1 M CH3OH aqueous solution and pure oxygen as reactants. Excellent cell performance was observed. The tested cell significantly outperformed a comparison cell using a commercial anode coated with carbon-supported Pt–Ru (Pt–Ru/C) electrocatalyst of similar composition and loading. High conductivity of carbon nanotube, good catalyst morphology and suitable catalyst composition of the prepared Pt–Ru/CNT electrocatalyst are considered to be some of the key factors leading to enhanced cell performance.  相似文献   

17.
The interface between the electrolyte and electrode catalyst plays an important role in determining the performance of proton-exchange membrane fuel cells (PEMFCs) since the electrochemical reactions take place at the interface in contact with the reactant gases. To enhance catalyst activity by enlarging the interfacial area, the surface of a Nafion® membrane is roughened by Ar+ ion beam bombardment that does not change the chemical structure of the membrane, as confirmed by FT-IR spectra. Among the membranes treated with ion dose densities of 0, 1015, 1016, 5 × 1016 and 1017 ions cm−2 at ion energy of 1 keV, the membrane treated at ion dose density of 5 × 1016 ions cm−2 exhibits the highest performance. Using the untreated and the treated membrane with 5 × 1016 ions cm−2, the effects of platinum loading on cell performance are examined with Pt loadings of 01, 0.2, 0.3, 0.4 and 0.55 mg cm−2. Except for a Pt loading of 0.55 mg cm−2 where mass transport limits the cell performance, the single cell using a treated membrane gives a higher performance than that using an untreated membrane. This implies that the cell performance can be improved and the Pt loading can be reduced by ion beam bombardment.  相似文献   

18.
《Journal of power sources》2005,144(1):141-145
A micro direct methanol fuel cell (μDMFC) with active area of 1.625 cm2 has been developed for high power portable applications and its electrochemical characterization carried out in this study. The fragility of the silicon wafer makes it difficult to compress the cell for good sealing and hence to reduce contact resistance in the Si-based μDMFC. We have instead used very thin stainless steel plates as bipolar plates with the flow field machined by photochemical etching technology. For both anode and cathode flow fields, widths of both the channel and rib were 750 μm, with a channel depth of 500 μm. A gold layer was deposited on the stainless steel plate to prevent corrosion. This study used an advanced MEA developed in-house featuring a modified anode backing structure with a compact microporous layer. Maximum power density of the micro DMFC reached 62.5 mW cm−2 at 40 °C, and 100 mW cm−2 at 60 °C at atmospheric pressure, which almost doubled the performance of our previous Si-based μDMFC.  相似文献   

19.
《Journal of power sources》2006,162(2):1073-1076
A 28-W direct borohydride–hydrogen peroxide fuel-cell stack operating at 25 °C is reported for contemporary portable applications. The fuel cell operates with the peak power-density of ca. 50 mW cm−2 at 1 V. This performance is superior to the anticipated power-density of 9 mW cm−2 for a methanol–hydrogen peroxide fuel cell. Taking the fuel efficiency of the sodium borohydride–hydrogen peroxide fuel cell as 24.5%, its specific energy is ca. 2 kWh kg−1. High power-densities can be achieved in the sodium borohydride system because of its ability to provide a high concentration of reactants to the fuel cell.  相似文献   

20.
《Journal of power sources》2005,145(2):262-265
Proton-conducting solid electrolytes composed of gadolinium-doped barium cerate (BCG) or gadolinium and praseodymium-doped barium cerate (BCGP) were tested in an intermediate-temperature fuel cell in which hydrogen or ammonia was directly fed. At 700 °C, BCG electrolytes with porous platinum electrodes showed essentially no loss in performance in pure hydrogen. Under direct ammonia at 700 °C, power densities were only slightly lower compared to pure hydrogen feed, yielding an optimal value of 25 mW cm−2 at a current density of 50 mA cm−2. This marginal difference can be attributed to a lower partial pressure of hydrogen caused by the production of nitrogen when ammonia is decomposed at the anode.A comparative test using BCGP electrolyte showed that the doubly doped barium cerate electrolyte performed better than BCG electrolyte. Overall fuel cell performance characteristics were enhanced by approximately 40% under either hydrogen or ammonia fuels using BCGP electrolyte. At 700 °C using direct ammonia feed, power density reached 35 mW cm−2 at a current density of approximately 75 mA cm−2. Minimal loss of performance was noted over approximately 100 h on-stream in alternating hydrogen/ammonia fuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号