首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synchrotron X-ray radiography is employed to visualize the temporal evolution of water inside the gas diffusion layer (GDL) of an operating (in situ) polymer electrolyte fuel cell (PEFC). A single-cell PEFC test kit is specially designed for the convenient capture of X-ray images. X-ray images of water in the PEFC components, such as the polymer membrane, GDL, and end plate, are captured consecutively. The synchrotron X-ray radiography of high-spatial and high-temporal resolution is suitable for observing the transport of a liquid layer and for visualizing water distribution inside the PEFC. As a result, the spatial distribution of water in the PEFC components is clearly and quantitatively visualized. The temporal evolution of water in the anode GDL due to back diffusion effect is clearly observed by adopting the image normalization method. The water-saturation characteristics at the cathode GDL, including saturation time and speed, are quite different from those at the anode GDL.  相似文献   

2.
In polymer electrolyte fuel cell (PEFC), it is important to understand the behavior of liquid water in gas diffusion layer (GDL) which is one of the constructional elements so as to improve the output performance and the durability. As this behavior of liquid water is attributed to not only the hydrophilicity but also inhomogeneous structure, it is needed to examine in consideration of an actual GDL structure. In this study, as the basic examination of two-phase flow analysis in an actual GDL, a simulated GDL was made by numerical analysis considering the fiber placement. Furthermore, the prediction methods for pore size distribution, permeability and tortuosity of this simulated GDL were developed with the numerical analysis. These parameters of flow and mass transfer were compared with other studies, and the validity of this simulated GDL was confirmed. In addition, effective diffusion coefficient was calculated from tortuosity in simulated GDL, and PEFC output performance was evaluated by a simple model. Moreover, the optimal GDL was examined in consideration of the effect of porosity and fiber diameter at the fiber level.  相似文献   

3.
对质子交换膜燃料电池单体建立了三维稳态电化学模型,考察了气体扩散层孔隙率对电池性能的影响,验证了扩散层孔隙率及层厚的变化反映从气体通道到扩散层和催化剂层的反应气体扩散量,进而影响电化学反应的活跃程度;以膜与阴极催化剂层界面处获得的最大电压为目标函数,采用鲍威尔搜索法对气体扩散层孔隙率进行数值优化,得到了扩散层孔隙率和层厚的最优值。通过优化前后氧气浓度和电流密度的对比显示,这些参数可以显著改善电极的传质性能,使燃料电池获得最佳性能。  相似文献   

4.
Water management in cathode gas diffusion electrode (GDE) of polymer electrolyte fuel cell (PEFC) is essential for high performance operation, because liquid water condensed in porous gas diffusion layer (GDL) and catalyst layer (CL) blocks oxygen transport to active reaction sites. In this study, the average liquid water content inside the cathode GDE of a low-temperature PEFC is experimentally and quantitatively estimated by the weight measurement, and the relationship between the water accumulation rate in the cathode GDE and the cell voltage is investigated. The liquid water behavior at the cathode is also visualized using an optical diagnostic, and the effects of operating conditions and GDL structures on the water transport in the cathode GDE are discussed. It is found that the liquid water content in the cathode GDE increases remarkably after starting the fuel cell operation due to the water production at the CL. At a high current density, the cell voltage drops suddenly after starting the operation in spite of a low water content in the cathode GDE. When the GDL thickness is increased, much water accumulates near the cathode CL and the fuel cell shuts down immediately after the operation. In the final section of this paper, the structure of cathode GDL that has several grooves for water removal is proposed to prevent water flooding and improve fuel cell performance. This groove structure is effective to promote the removal of the liquid water accumulated near the active catalyst sites.  相似文献   

5.
The purpose of this work is to numerically investigate the effects of non-uniform compression of the gas diffusion layer (GDL) and GDL intrusion into a channel due to the channel/rib structure of the flow-field plate. The focus is placed on accurately predicting two-phase transport between the compressed GDL near the ribs and uncompressed GDL near the channels, and its associated effects on cell performance. In this paper, a GDL compression model is newly developed and incorporated into a comprehensive three-dimensional, two-phase PEFC model developed earlier. To assess solely the effects of GDL compression and intrusion, the new fuel cell model is applied to a simple single-straight channel fuel cell geometry. Numerical simulations with different levels of GDL compression and intrusion are carried out and simulation results reveal that the effects of GDL compression and intrusion considerably increase the non-uniformity, particularly, the in-plane gradient in liquid saturation, oxygen concentration, membrane water content, and current density profiles that in turn results in significant ohmic and concentration polarizations. The present three-dimensional GDL compression model yields realistic species profiles and cell performance that help to identify the optimal MEA, gasket, and flow channel designs in PEFCs.  相似文献   

6.
7.
The aim of this work is to study the effects of gas-diffusion layer (GDL) anisotropy and the spatial variation of contact resistance between GDLs and catalyst layers (CLs) on water and heat transfer in polymer electrolyte fuel cells (PEFCs). A three-dimensional, two-phase, numerical PEFC model is employed to capture the transport phenomena inside the cell. The model is applied to a two-dimensional cross-sectional PEFC geometry with regard to the in-plane and through-plane directions. A parametric study is carried out to explore the effects of key parameters, such as through-plane and in-plane GDL thermal conductivities, operating current densities, and electronic and thermal contact resistances. The simulation results clearly demonstrate that GDL anisotropy and the spatial variation of GDL/CL contact resistance have a strong impact on thermal and two-phase transport characteristics in a PEFC by significantly altering the temperature, water and membrane current density distributions, as well as overall cell performance. This study contributes to the identification of optimum water and thermal management strategies of a PEFC based on realistic anisotropic GDL and contact-resistance variation inside a cell.  相似文献   

8.
Effects of hydrophobic treatment and micro-porous layer (MPL) addition to a gas diffusion layer (GDL) in a polymer electrolyte fuel cell (PEFC) have been investigated from water balance analysis at the electrode (catalyst layer), GDL and flow channel in the cathode after a simulated start-up operation. The water balance is directly analyzed by measuring the weight of the adherent water wiped away from each the component. As a result, we find that hydrophobic treatment without MPL leads to the increase in liquid water accumulation at the electrode which limits the oxygen transport to the catalyst and then lowers the cell voltage rapidly during start-up, whereas the treatment decreases the water at the GDL. The water accumulation at the electrode also decreases the cumulative current that represents the power generation and calorific power indispensable for warming up at a temperature below freezing point. On the other hand, we directly find that the hydrophobic treatment with MPL addition suppresses the water accumulation at the electrode, which increases the cumulative current. In addition, it is found that increase in air permeability of a GDL substrate by its coarser structure increases the cumulative current, which is explained by enhancing the exhaust of the product water vapor and liquid as well as by enhancing the oxygen transport directly. Thus, the hydrophobic treatment with MPL addition and larger air permeability of a GDL substrate improve the start-up performance of a PEFC.  相似文献   

9.
A numerical study about in-plane porosity and contact angle gradient effects of cathode gas diffusion layer (GDL) on polymer electrolyte membrane fuel cell (PEMFC) under low humidity condition below 50% relative humidity is performed in this work. Firstly, a numerical model for a fuel cell is developed, which considers mass transfer, electrochemical reaction, and water saturation in cathode GDL. For water saturation in cathode GDL, porosity and contact angle of GDL are also considered in developing the model. Secondly, current density distribution in PEMFC with uniform cathode GDL is scrutinized to design the gradient cathode GDL. Finally, current density distributions in PEMFC with gradient cathode GDL and uniform cathode GDL are compared. At the gas inlet side, the current density is higher in GDL with a gradient than GDL with high porosity and large contact angle. At the outlet side, the current density is higher in GDL with a gradient than GDL with low porosity and small contact angle. As a result, gradient cathode GDL increases the maximum power by 9% than GDL with low porosity and small contact angle. Moreover, gradient cathode GDL uniformizes the current density distribution by 4% than GDL with high porosity and large contact angle.  相似文献   

10.
In this paper, the hydrogen and nitrogen crossover through the membrane in proton exchange membrane fuel cells, are investigated by developing a semi-empirical analytical model. Different factors that affect the gas crossover rates were considered including pressure drop in gas diffusion layer (GDL) and catalyst layer (CL), operating temperature, relative humidity (RH) of the reactants, GDL compression, and the current density effect on the membrane temperature. The model is validated by published experimental data. It is found that RH is the most important parameter, followed by temperature. The hydrogen pressure drop through GDL and CL greatly depends on the GDL substrate properties, microporous layer (MPL) and CL. When permeability is low, an increase in current density reduces gas crossover. GDL compression, when MPL is used, was found to have a low impact on gas crossover. Gas crossover is improved with current density due to an increase in membrane temperature.  相似文献   

11.
The adhesion force of water droplet on the gas diffusion layer (GDL) is modeled based on the droplet deformation. The deformed droplet is represented as an ovoid shape. The adhesion force is calculated based on it and verified by the surface tilting experiment. The model predicts the shape of deformed droplet and adhesion force within 30% error, whereas previous models predict adhesion force with error larger than 30%. The modified model is used to compare the adhesion force among 3 types of GDL having pore gradient. The comparison result is well matched with the water distribution in polymer electrolyte membrane fuel cell (PEMFC) and water detachment phenomena at the GDL. High adhesion force makes more water accumulation at the interface of GDL and gas supplying channel. This makes different boundary condition and changes the water distribution in PEMFC.  相似文献   

12.
Local compression distribution in the gas diffusion layer (GDL) of a polymer electrolyte membrane fuel cell (PEMFC) and the associated effect on electrical material resistance are examined. For this purpose a macroscopic structural material model is developed based on the assumption of orthotropic mechanical material behaviour for the fibrous paper and non-woven GDLs. The required structural material parameters are measured using depicted measurement methods. The influence of GDL compression on electrical properties and contact effects is also determined using specially developed testing tools. All material properties are used for a coupled 2D finite element simulation approach, capturing structural as well as electrical simulation in combination. The ohmic voltage losses are evaluated assuming constant current density at the catalyst layer and results are compared to cell polarisation measurements for different materials.  相似文献   

13.
High-temperature proton exchange membrane (HT-PEM) fuel cells were more useable than traditional low-temperature proton exchange membrane fuel cells. To investigate the current density distribution in a single HT-PEM fuel cell with a poly (2, 5-benzimidazole) membrane, a modified current distribution measuring device was developed. This device included not only a current distribution measuring gasket to collect local current but also a segmented gas diffusion layer (GDL) to hinder electron transfer in the GDL along the gas flow direction. The effects of this device installation configuration and operating conditions on the current density distribution were analyzed. One of the important findings was that proton transfer along an in-plane direction in the membrane and electron transfer along an in-plane direction in the GDL really occur in HT-PEM fuel cells. These results were very helpful for the optimization of the flow field and operating parameters of the HT-PEM fuel cells.  相似文献   

14.
In this paper, we develop a pore network model for liquid water and reactant gas transport through the porous gas diffusion layer (GDL) of mixed wettability. We first consider the case of uniform distribution of hydrophilic fraction along the GDL thickness. It is revealed that the addition of hydrophilic pores has a negligible impact on liquid saturation profile when the hydrophilic fraction is low (?0.2), whereas in the case of higher hydrophilic fraction (?0.4), a flat shape of liquid saturation profile is observed along the GDL thickness. The total liquid saturation in the GDL is found to first decrease and then increase with the increase of hydrophilic pores; and an optimum hydrophilic fraction exists leading to the maximum limiting current density. Also, we investigate the transport process in the GDL of non-uniform wettability (i.e., the hydrophilic fraction is 0.4 near the network inlet, while at the downstream region it is 0.3). As compared to the uniform case, the liquid saturation level at the downstream region is drastically decreased in the non-uniform system, thereby leading to a higher limiting current density. These findings suggest that the fuel cell performance can be improved by designing the GDL with appropriate wettability distribution.  相似文献   

15.
The present study discusses a detailed investigation on the implications of non-uniform porosity distribution in the gas diffusion layer (GDL) on the performance of proton exchange membrane fuel cell (PEMFC). A three-dimensional, single-phase, isothermal model of high-temperature PEMFC is employed to study the effect of non-uniform porosity distribution in GDL. The different porosity configurations with stepwise, sinusoidal, and logarithmic variation in porosity along the streamwise direction of GDL are considered. The numerical experiments are performed, keeping average porosity as constant in the GDL. The electrochemical characteristics such as the oxygen molar concentration, power density, current density, total power dissipation density, average diffusion coefficient, vorticity magnitude, and overpotential are studied for a range of porosity distributions. Furthermore, the variations of oxygen concentration, average diffusion coefficient, and vorticity magnitude are also discussed to showcase the influence of non-uniform porosity distribution. Our study reveals that the PEM fuel cell performance is the best when the porosity of the GDL decreases logarithmically in the streamwise direction. On the contrary, the performance deteriorates when the GDL porosity decreases sinusoidally. Also, it has been observed that the effects of non-uniform porosity distribution are more pronounced, especially at higher current densities. The outcomes of present investigation have potential utility in GDL fabrication and membrane assembly's sintering process for manufacturing high valued PEMFC products.  相似文献   

16.
Proton exchange membrane fuel cell (PEMFC) is one of the most promising power energy sources in the world, and its mechanism research has become the main starting point to improve the comprehensive performance of fuel cells. The gas diffusion layer (GDL) of a proton exchange membrane fuel cell has a significant impact on the overall performance of the cell as an important component in supporting the catalytic layer, collecting the current, conducting the gas and discharging the reaction product water. In this paper, a three-dimensional two-phase isothermal fuel cell model is established based on COMSOL, the gradient porosity of the GDL, thickness of the GDL, operating voltage and working pressure of proton exchange membrane fuel cell are analyzed, the consistency problem of fuel cell performance improvement and life extension that is easily overlooked in numerous studies is found. On this basis, a neural network proxy model is constructed through a large amount of data, and a multi-objective genetic optimization algorithm based on the compromise strategy of recombination optimization is proposed to optimize the uniformity of fuel cell power and oxygen molar concentration distribution, which improves the performance of the fuel cell by 1.45% compared with the power increase when it is not optimized. At the same time, the uniformity of oxygen distribution is improved 10.28%, which makes the oxygen distribution more uniform, prolongs the life of the fuel cell, and fills the gap in the optimization direction of the comprehensive performance of the fuel cell.  相似文献   

17.
《Journal of power sources》2006,160(1):340-352
A numerical investigation of the transport phenomena and performance of a proton exchange membrane fuel cell (PEMFC) with various design parameters of the transport component is presented. A three-dimensional fuel cell model, incorporating conservations of species, momentum, as well as current transport, is used. The Bulter–Volmer equation that describes the electrochemical reaction in the catalyst layer is introduced; the activation overpotential connects the solid phase potential field to that of the electrolyte phase. Through cell performance simulation with various channel aspect ratios and gas diffusion layer (GDL) thicknesses, a slender channel is found suitable for cells operating at moderate reaction rate, and a flat channel produces more current at low cell voltage. Plots of transverse oxygen concentration and phase potential variation indicate that these oppositely affect the local current density pattern. The relative strengths of these two factors depend on the transport component position and geometry, as well as on the cell operating conditions. Consequently, the curves of cell output current density demonstrate that the optimal GDL thickness increases as the cell voltage decreases. However, at the lowest considered cell voltage of 0.14 V, optimal thickness decreases as that of a thick GDL. The oxygen deficiency caused by long traveling length and clogging effect of liquid water reverses this relationship.  相似文献   

18.
A comprehensive, three‐dimensional model of a proton exchange membrane (PEM) fuel cell based on a steady state code has been developed. The model is validated and further be applied to investigate the effects of various porosity of the gas diffusion layer (GDL) below channel land areas, on thermal diffusivity, temperature distribution, oxygen diffusion coefficient, oxygen concentration, activation loss and local current density. The porosity variation of the GDL is caused by the clamping force during assembling, in terms of various compression ratios, that is, 0%, 10%, 20%, 30% and 40%. The simulation results show that the higher compression ratio on the GDL leads to lower porosity, and this is helpful for the heat removal from the cell. The compression effects of the GDL below the land areas have a contrary impact on the oxygen diffusion coefficient, oxygen concentration, cathode activation loss, local current density and cell performance. Generally, a lower porosity leads to a smaller oxygen diffusion coefficient, a less uniform oxygen concentration, a higher activation loss, a smaller local current density and worse cell performance. In order to have a better cell performance, the clamping force on the cell should be as low as possible but ensure gas sealing. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A two-dimensional two-phase model is used to analyze the effects of anisotropic electrical resistivity on current density and temperature distribution in a PEM fuel cell. It is observed that a higher in-plane electrical resistivity of the gas diffusion layer (GDL) adversely affects the current density in the region adjacent to the gas channel and generates slightly higher current densities in the region adjacent to the current collector. Also, in case of GDLs with high anisotropic thermal conductivity, the maximum and minimum temperatures in a cathode catalyst layer depend on the average current density and not the local current density.  相似文献   

20.
The water required for the methanol oxidation reaction in a direct methanol fuel cell (DMFC) operating with neat methanol can be supplied by diffusion from the cathode to the anode through the membrane. In this work, we present a method that allows the water transport rate through the membrane to be in-situ determined. With this method, the effects of the design parameters of the membrane electrode assembly (MEA) and operating conditions on the water transport through the membrane are investigated. The experimental data show that the water flux by diffusion from the cathode to the anode is higher than the opposite flow flux of water due to electro-osmotic drag (EOD) at a given current density, resulting in a net water transport from the cathode to the anode. The results also show that thinning the anode gas diffusion layer (GDL) and the membrane as well as thickening the cathode GDL can enhance the water transport flux from the cathode to the anode. However, a too thin anode GDL or a too thick cathode GDL will lower the cell performance due to the increases in the water concentration loss at the anode catalyst layer (CL) and the oxygen concentration loss at the cathode CL, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号