首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fluid–particle synchronous measurements in a boundary layer wind tunnel were conducted to determine the particle concentration response to turbulent velocity fluctuation. Three groups of natural sand samples (diameter of 300–500, 100–125 and 63–80 μm) were employed in the experiments. Consecutive instants of saltating particles were recorded by using a high-speed digital camera at 2000 frames per second and a constant-temperature hot-wire anemometer was used to measure the turbulent fluctuation simultaneously. The particle concentration in the saltation layer was calculated by the dynamic-threshold binarization algorithm. The results confirm that the concentration fluctuation is a fairly typical stochastic process, and the low-frequency variation of particle concentration is closely related to the turbulent fluctuation. Moreover, a method was developed to apply wavelet packet transform to two-phase data analysis from the viewpoint of frequency-domain energy structure. Further analysis shows that the concentration fluctuation is predominant in the low frequency band less than 250 Hz. In addition, the particle concentration response to the turbulent fluctuation is significantly correlated with the particle diameter. For the fine particles (63–80 μm), medium particles (100–125 μm) and coarse particles (300–500 μm), the highest response frequencies of particle concentration variation to the turbulent fluctuation are 60, 40 and 30 Hz, respectively, which demonstrates that an appropriate sampling rate is crucial in saltation measurement. These qualitative and quantitative results are beneficial to understand the fluid–particle interaction mechanism.  相似文献   

2.
To develop a method for measuring the flowability of MOX (mixed oxide of uranium and plutonium) particles used in the simplified MOX pellet fabrication process, the flowability of model particles has been investigated by the vibrating tube method. As model particles, pulverized ZrO2 and granulated WO3 were used. To prepare a variety of samples, coarse particles of 106–250 μm in diameter were mixed with fine particles smaller than 45 μm in diameter in different concentrations. The prepared particles were put into the vibrating tube and the amplitude of vibration was increased at a constant rate for a period of time and then decreased. The mass of particles discharged from the tube was measured at constant time intervals. From the experimental data, the relationships between the mass flow rate and the vibration acceleration (i.e. flowability profiles) were obtained. Two factors (i.e. ‘critical vibration acceleration’ to make the particles flow and ‘characteristic mass flow rate’) were selected to analyze the flowability profiles. The hysteresis of the flowability between increasing and decreasing vibration accelerations was also evaluated.  相似文献   

3.
《Advanced Powder Technology》2014,25(4):1249-1253
Interest in microfluidics is rapidly expanding and the use of microchips as miniature chemical reactors is increasingly common. Microfluidic channels are now complex and combine several functions on a single chip. Fluid flow details are important but relatively few experimental methods are available to probe the flow in confined geometry. We use optical trapping of a small dielectric particle to probe the fluid flow. A highly focused laser beam attracts particles suspended in a liquid to its focal point. A particle can be trapped and then repositioned. From the displacement of the trapped particle away from its equilibrium position one estimates the external force acting on the particle. The stiffness (spring constant) of the optical trap is low thus making it a sensitive force measuring device. Rather than using the optical trap to position and release a particle for independent velocimetry measurement, we map the fluid flow by measuring the hydrodynamic force acting on a trapped particle. The flow rate of a dilute aqueous electrolyte flowing through a plastic microchannel (W × H × L = 5 mm × 0.4 mm × 50 mm) was mapped using a small silica particle (1 μm diameter). The fluid velocity profile obtained experimentally is in very good agreement with the theoretical prediction. Our flow mapping approach is time efficient, reliable and can be used in low-opacity suspensions flowing in microchannels of various geometries.  相似文献   

4.
In this study mechanical properties of copper were enhanced by adding 1 wt.%, 2 wt.%, 3 wt.% and 5 wt.% SiC particles into the matrix. SiC particles of having 1 μm, 5 μm and 30 μm sizes were used as reinforcement. Composite samples were produced by powder metallurgy method and sintering was performed in an open atmospheric furnace at 700 °C for 2 h. Optical and SEM studies showed that the distribution of the reinforced particle was uniform. XRD analysis indicated that the dominant components in the sintered composites were Cu and SiC. Relative density and electrical conductivity of the composites decreased with increasing the amount of SiC and increased with increasing SiC particle size. Hardness of the composites increased with both amount and the particle size of SiC particles. A maximum relative density of 98% and electrical conductivity of 96% IACS were obtained for Cu–1 wt.% SiC with 30 μm particle size.  相似文献   

5.
There is a considerable challenge in accurate characterisation of gold (Au) particles in low-grade plant ore mineral samples. This is particularly true for automated mineralogical tools such as X-ray micro-computed tomography (Micro-CT) and scanning electron microscopy (SEM), where the need for statistically meaningful numbers of particles requires many sections to be analysed. Whiles the Vertical Gas Stream (VGS) elutriator is suitable for coarse particle upgrading (i.e. >38 μm), the performance is poor for finer particles (i.e. <38 μm). Consequently, the system has been modified to Vertical Water Stream (VWS) elutriator using higher density fluid (i.e. water) to enable analysis of Au particles below 38 μm. In this work, the VGS system was used to upgrade Au particles in the ?53 + 38 μm size fraction (in rougher concentrate, rougher tailings, regrind mill discharge and regrind cyclone underflow) and the VWS system was used to upgrade Au particles in the ?38 μm size fraction of the regrind mill discharge sample. The VWS elutriator was calibrated using galena (specific gravity, S.G. of 7.58) and quartz (S.G. of 2.65) particles of <38 μm size as model minerals. From the calibration tests, partition curves as a function of particle size were generated. Using these measurements, theoretical partition curves for Au (S.G. of 19.3) have been calculated. The VWS concentrate was characterised using Micro-CT and compared with SEM coupled with energy dispersive X-ray (EDX) analysis of ?53 + 38 μm ore size fraction of the VGS concentrate of the four sample streams. The Micro-CT analysis of VWS Au concentrate showed that sufficient particles (Au) can be upgraded. SEM/EDX results indicate that regrind does not affect changes in free Au particle morphology, aspect ratio and frequency of shearing damage in the ?53 + 38 μm size fraction. Cyclone classification of the regrind mill discharge in the ?53 + 38 μm size fraction appears to perform surface cleaning by exposing obscuring silver (Ag) surfaces on Au particles in the mill discharge sample.  相似文献   

6.
For reaction sintered SiC (RSSC) prepared at 1600°C by conventional melt infiltration technique, experimentation with two different particle sizes of initial SiC, viz., 0.2 and 23.65 μm, showed that the large SiC particles remained unaltered and the sizes of the fine-grained SiC increased several times yielding well-developed faceted crystals in the final material. To study the process further, compacts of SiC powder of particle sizes varying between 0.20 and 8.99 μm were reacted with pure Si at 1600°C and the resulting SiC–Si boundaries were studied by optical microscopy. A distinct boundary layer with no penetration of Si in the compact of SiC of 0.2 μm was observed and the width of the SiC–Si boundary was found to be increasing linearly with time. Detailed SEM examination establishes the growth of the SiC upto around 4 μm from 0.2 μm starting powder. No such growth was observed in the case of starting SiC powder coarser than 0.2 μm. The growth of SiC is explained in terms of solution-reprecipitation mechanism.  相似文献   

7.
This paper investigated the 3-D motion of saltation sand by high-speed photography and stereo particle image velocimetry (SPIV). By the high-speed camera, the sand particle trajectories in the transverse plane near bed surface have been obtained. It could be found that the collision between the particle and the bed surface would in principle cause the transverse motion of the particle regardless of the change of the wind direction. Based on SPIV, The three-dimensional velocities of the sand particles in the wind–sand flow have been obtained by combining the velocity data from double CCD cameras. The three-dimensional velocity of the sand particle was resolved into three component velocities in the paper, i.e. the streamwise velocity u, the vertical velocity v and the transverse velocity w. The distribution of the transverse velocities w of the sand particles approximated symmetrical. The peak value of the PDF (probability density function) of velocity w fell down obviously with the increase of the wind speed when the sand sizes were equal to or less than 125 μm. When the sand sizes were larger than 125 μm, the peak value of the PDF of w was almost constant with the change of the wind speed. Although the increments of v with the increase of the wind speed were larger than that of w, the velocity w of the sand particle appeared to be much larger than its velocity v in general. Moreover, it was near one fourth probability that the quantity of the particle velocity w was one order higher than that of its velocity v. The inclination angle between w and u of the sand would be less than 60° and the inclination angle between the v and u would be less than 20° integrally.  相似文献   

8.
Ibuprofen particles (mean particle size, 27 μm and melting point, 76 °C) as core materials were directly coated with a water-soluble polymer. The primary particles were preserved using a composite fluidized bed with a dispersing mechanism at the bottom of the fluidized bed apparatus. Coated primary particles were obtained under the following 3 conditions: (1) Setting the spray air flow rate at 10 L/min from the initial to 2% coating, (2) adding the low-viscosity water-soluble polymer macrogol 6000 to the hypromellose coating solution, and (3) changing the spray air flow rate to 15 L/min from 2% coating. The particles obtained were confirmed to be coated primary particles by scanning electron microscopy of their cross sections prepared by the cryo-focused ion beam method. The dissolution test showed a marked improvement in the solubility of ibuprofen from the coated primary particles compared with that of a physical mixture. In conclusion, the optimization of the direct coating process made it possible to undertake primary particle coating of a raw material that has a low melting point and a particle size of not more than 50 μm. Primary particle coating contributes to improvements in the physicochemical properties of drugs.  相似文献   

9.
The RESS method was used to manufacture the fine particles of diclofenac. A reduction in particle size increases the dissolution rate of the drugs in the biological fluids and enhances the bioavailability of them in body. CO2 was used as the supercritical fluid because of its mild critical temperature (31.1 °C) and pressure (7.38 MPa). In this study, effect of extraction temperature (313–333 K), extraction pressure (14–220 MPa), spraying distance (1–10 cm), nozzle length (2–15 mm) and effective nozzle diameter (450–1700 μm) were investigated.Based on the different experimental conditions, the average particle size of diclofenac was between 10.92 and 1.33 μm. The size and morphology of the micronized diclofenac particles were monitored by scanning electron microscopy (SEM). The SEM images show a successful size reduction of virgin diclofenac particles. In all the experiments, the parameters had moderate effect on the mean particle size of the diclofenac. Also, the morphology of the processed particles was change to quasi-spherical and irregular while the virgin particles of diclofenac were irregular in shape.  相似文献   

10.
Sizing of particles in industrial processes is of great technical interest and therefore different physical-based techniques have been developed. The objective of this study was to review the characteristics of modern sizing instruments based on a modified fibre-optical spatial filtering technique (SFT). Fibre-optical spatial filtering velocimetry was modified by fibre-optical spot scanning in order to determine simultaneously the size and the velocity of particles. Sizing in-line instruments of Parsum GmbH use these measuring principles and may be adapted to different process conditions. Particles with sizes of 50–6000 μm and velocities up to 50 m/s may be measured by the probe system IPP 70. An overview is given to real-time sizing of particles in different technical applications: fluid-bed granulation, high shear wet granulation, Wurster coating, mixing, spray drying, crystallization and milling.  相似文献   

11.
Discrete Element Method computer simulations have been carried out to analyse the influence of the hydrophobic force model on the capture of particles by a central bubble. Two hundred particles, with diameters ranging between 24 and 66 μm, were randomly positioned within a maximum distance from the surface of a bubble of 2 mm in diameter. Initial particle velocities were random in direction and value and they followed Gaussian distributions with standard deviations between 0.0 and 1.0 m/s. Three possible models, named A, B and C have been used in the simulations. The models correspond to different published relationships of the hydrophobic force with the distance between particle and bubble surfaces, d. Model A corresponds to a hydrophobic force that decays in the form 1/d; the hydrophobic force given by Model B uses a relationship in the form 1/d2; Model C predicts a force that decays in an exponential way in the form exp(?d/λ). These models have also been compared with a base case in which the hydrophobic force only acted when the particles were in contact with the bubble. Therefore, we could better discern between the influence of the initial particle velocities and the long range component of the hydrophobic force. The differences in the capture efficiency of the particles predicted by the three models were drastic. All particles were captured by the bubble in the cases simulated using Model A for any particle–bubble surface distance smaller than 1 mm. However, only 40% and 60% of the particles were captured even for particles located at distances of less than 50 μm from the bubble surface in the cases simulated using Models B and C (λ = 1 μm), respectively. In fact, the capture of particles seems to be more strongly influenced by how the hydrophobic force decays with interparticle distance in the range of tens of micrometres rather than by the differences between the models in the range of micrometres. Therefore, this work should aid in the future determination of a general hydrophobic force model through an experimental comparison of the kinetics of collision of particles against bubbles in flotation cells with the simulation results.  相似文献   

12.
《Advanced Powder Technology》2021,32(9):3297-3313
This study investigates the fluidization of lactose carriers from a powder bed subjected to a normal force in a channel flow using high-speed imaging, particle image velocimetry (PIV), and high-speed, long-distance microscopy (HS-LDM). Pharmaceutical lactose carriers (LH200 and SV010) with different cohesiveness and fines percentages were examined in this study. Airflow velocities in the range of 1.4 m/s and 7m/s were tested, corresponding to flow rates ranging from 20 to 100 L/min. The use of HS-LDM in tandem with PIV has enabled measurement of the slip factor between particles and conveying airflow as well as metrics that help to identify dose homogeneity as a function of location in the channel flow. The results indicate a lower slip ratio and a larger change in powder particle size bands percentages along with channel height in the region near the powder bed, because of flow recirculation and higher velocity fluctuation observed in that region.  相似文献   

13.
Hydroxyapatite (HAp) powder was produced by drip pyrolysis in a fluidized bed (DPFB) at 913–1113 K with dry air. In this study, HAp powders derived using different concentrations of a solution-type precursor material were compared with those derived using slurry-type precursor materials. From a solution-type precursor containing calcium nitrate and ammonium phosphate dibasic, fine HAp powders with mean particle sizes of approximately 8–40 μm were produced, depending on the solution concentration and reaction temperature. In these cases, bimodal particle size distribution was observed. Spherical alumina of 250 μm was found to be superior to silica sand of 270 μm as the coarse medium particles in reducing contamination of the product powder. The thermal stability of HAp derived from a slurry-type precursor after 1-day aging was improved by DPFB. HAp powders derived from the solution-type precursor material were Ca-deficient, and their Ca/P molar ratio increased with bed temperature. In contrast, the Ca/P molar ratio of HAp powders from the slurry-type precursor material was nearly stoichiometric. Morphology strongly depended on the starting precursor material. The solid collection ratio was closely related to the population of product particle sizes larger than 25 μm.  相似文献   

14.
A spark plasma sintering (SPS) technique has been applied to prepare fully dense Al samples from Al powder. By applying a sintering temperature of 600 °C and a loading pressure of 50 MPa, fully recrystallized samples of nearly 100% density with average grain sizes of 5.2 μm, 1.3 μm and 0.8 μm have been successfully prepared using a sintering time of less than 30 min and without the need for a nitrogen atmosphere. A similarity between the grain size and powder particle size is found, which suggests a potential application of the SPS technique to prepare samples with a variety of grain sizes by tailoring the initial powder particle size. The SPS samples show higher strength than Al samples with an identical grain size prepared using thermo-mechanical processing, and a better strength–ductility combination, with the 1.3 μm grain size sample showing a yield strength (σ0.2%) of 140 MPa and a uniform elongation of more than 10%. This higher strength is related to the presence of oxide particles in the grain boundaries of the samples. It is concluded that SPS is an excellent technique for the production of very fine grained Al materials with high strength, by combining both grain boundary and oxide dispersion strengthening.  相似文献   

15.
Clinical investigation shows a dramatic relation between deposition of particles in lung’s pathways and respiratory system diseases. Particle deposition may also play a major role in drug delivery via respiratory system. Previous researches on symmetric and 5-lobe models for rat, dog, hamster and human show that, the deposition fraction of fine particles (between 0.1 and 0.7 μm) is minimum. A multi-path asymmetric 5-lobe model of Horsfield et al. is employed to construct the airway tree. Since the data are based on lung casting, asymmetric properties of the model are more realistic. Deposition of 0.01–10 μm particles is calculated during inhalation using published formulas in every branch. Here, we measured the deposition up to alveolar region. Accumulative deposition versus particle diameter predicts less deposition in comparison with symmetric models in as much as our model is asymmetric. The flow is divided based on distal volume. Particle deposition for 0.01 μm is in good agreement with other models but for 1 μm different trend in lower generations is observed. It is concluded that the asymmetric pattern gives different deposition fraction in all regions, since the distinctive geometric properties of the model is in some extent different from that of symmetric model. But, the accumulative deposition trend is similar in both symmetric and asymmetric models.  相似文献   

16.
The compressibility behavior of Al–SiC nanocomposite powders was examined and the density-pressure data were analyzed by linear and non-linear compaction equations. SiC particles with an average size of 50 nm were mixed with gas-atomized aluminum powder (40 μm average size) at different volume fractions (up to 20 vol%) and compacted in a rigid die at various pressures. In order to highlight the effect of reinforcement particle size, the compressibility of micrometric SiC particles of two sizes (1 and 40 μm) was also examined. Analysis of the compressibility data indicated hindering effect of the hard ceramic particles on the plastic deformability of soft aluminum matrix, particularly at high volume fractions. More pronounced effect on the yield pressure was obtained for the nanometric particles compared with the micrometric ones. Nevertheless, better particles rearrangement was taken place when the ultrafine SiC particles were utilized. In light of the experimental and theoretical analysis, the densification mechanism of aluminum matrix composites and the effect of reinforcement particle size and volume fraction are discussed.  相似文献   

17.
The particle size distributions of slag powder were investigated by Laser Scatter equipment. The influence of particle fractions of slag powder on the compressive strength of slag cement composed of 50% slag powder and 50% Portland cement was also studied by the method of grey correlation analysis. The results indicated that the volume fraction of particles 5–10 μm had a maximum positive effect on the mortar compressive strength of slag cement at 7 d and the volume fraction of particles 10–20 μm had a maximum positive effect on the mortar compressive strength at 28 d, whereas the volume fraction of particles larger than 20 μm had a negative effect on the mortar compressive strength at 7 and 28 d.  相似文献   

18.
The solid phase behavior is studied in the upper zone of a circulating fluidized bed riser with glass particle of mean diameter 107 μm, using a Phase Doppler Anemometer. Superficial gas velocities Ug > Uc are investigated covering the turbulent and the fast fluidization regimes and this for three static bed heights (Hs = 50 mm, Hs = 100 mm and Hs = 150 mm). The results show that the mean axial particle velocity lateral profile shapes found parabolic for Hs = 50 mm, devolve to a concave shape for Hs = 100 mm and Hs = 150 mm, creating a particles speeding zone between the core and the annulus zones. For both axial and transversal standard deviations of particle velocities in the core region, the values for the three static bed heights unite to form two stages of evolutions with Ug, where the transition velocity between these stages is found associated to the appearing of a significant entrainment of solid particles. At this transition velocity, the transversal movement originally directed toward the center riser, undergo a change toward the wall beginning near the wall and spreading into a large part of the section riser with increasing Ug. A discussion on the boundary between the turbulent and fast fluidization regimes is made based on these results.  相似文献   

19.
In this study we experimentally investigated powder conveyance in a horizontal rectangular channel using fluidizing air. The conveying system consisted of a powder discharge vessel and a horizontal rectangular channel at the side of the vessel. The air velocities at the bottom of the vessel and the horizontal channel were changed experimentally. The powder was glass beads that are Geldart A particles, with a mean diameter of 53 μm, a particle density of 2523 kg/m3 and a minimum fluidizing velocity of 4.329 mm/s. We measured the mass of the transported powder, the bed height of the powder in the vessel, the air pressures at the bottom of the vessel and the horizontal channel, and the flow pattern during powder conveying. Sufficient powder conveying could not be obtained when air was not supplied to the bottom of the vessel. On the other hand, the powder could be transported smoothly when air was supplied to the bottom of the vessel and the air velocity at the bottom of the horizontal channel exceeded the minimum fluidizing velocity. In this case, the powder was discharged smoothly from the vessel to the horizontal channel, and then the powder flowed easily toward the exit of the horizontal channel. The mass flow rate of the powder was in proportion to the falling velocity of the powder in the vessel, where that velocity was related to the discharge of the powder from the vessel. Therefore, it is found that the discharge of the powder from the vessel had significant effect on the horizontal conveying of fluidized powder in this system.  相似文献   

20.
《Advanced Powder Technology》2014,25(6):1845-1853
This paper presents a microscopic analysis of the saltation of particles on an obliquely oscillating plate driven by sine waves with an amplitude on the order of tens of micrometers and a frequency on the order of hundreds of hertz. To examine the effect of the diameter of a particle on its motion, the trajectories and velocities of different-sized particles, from 0.5 to 500 μm in mass median diameter, are analyzed using images captured by a high-speed microscope camera. The results show that larger particles bounce higher, whereas smaller particles easily agglomerate and bounce only slightly, owing to the low restitution caused by their loosely packed structure. In addition, larger particles bounce forward and backward repeatedly, while the agglomerated particles always bounce forward, and consequently have the highest transport velocity among these particles. The particle motion and the transport velocity can be explained by a theoretical probability model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号