首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In situ detection of anode flooding of a PEM fuel cell   总被引:1,自引:0,他引:1  
This paper proposes an early detection scheme of anode flooding in a PEM fuel cell. Through experimental testing of an eight-cell hydrogen-fueled polymer electrolyte stack it is shown that anode flooding can be detected prior to a rapid voltage decline. The proposed detection scheme requires no additional costly instrumentation and uses the existing voltage scan cards.  相似文献   

2.
To improve the performance and durability of a dead-ended anode (DEA) fuel cell, it is important to understand and characterize the degradation associated with the DEA operation. To this end, the multiple degradation phenomena in DEA operation were investigated via systematic experiments. Three lifetime degradation tests were conducted with different cell temperatures and cathode relative humidities, during which the temporal evolutions of cell voltage and high frequency resistance (HFR) were recorded. When the cathode supply was fully humidified and the cell temperature was mild, the cathode carbon corrosion was the predominant degradation observed from scanning electronic microscopy (SEM) of postmortem samples. The catalyst layer and membrane thickness were measured at multiple locations across the cell active area in order to map the degradation patterns. These observations confirm a strong correlation between the cathode carbon corrosion and the anode fuel starvation occurring near the cell outlet. When the cathode supply RH reduced to 50%, membrane pin-hole failures terminated the degradation test. Postmortem analysis showed membrane cracks and delamination in the inlet region where membrane water content was the lowest.  相似文献   

3.
When operating the polymer electrolyte membrane (PEM) fuel cell stack, temperatures in the stack continuously change as the load current varies. The temperature directly affects the rate of chemical reactions and transport of water and reactants. Elevated temperature increases the mobility of water vapor, which reduces the ohmic over-potential in the membrane and eases removal of water produced. Adversely, the high temperature might impose thermal stress on the membrane and cathode catalyst and cause degradation. Conversely, excessive supply of coolants lowers the temperature in the stack and reduces the rate of the chemical reactions and water activity. Corresponding parasitic power dissipated at the electrical coolant pump increases and overall efficiency of the power system drops.  相似文献   

4.
Fuel gas containing carbon monoxide severely degrades the performance of a polymer electrolyte membrane (PEM) fuel cell. However, CO poisoning can be mitigated by introducing oxygen into the fuel (oxygen bleeding). A mathematical PEM fuel cell model is developed that simulates both CO poisoning and oxygen bleeding, and obtains excellent agreement with published, experimental data. Modelling efforts indicate that CO adsorption and desorption follow a Temkin model. Increasing operating pressure or temperature mitigates CO poisoning, while use of reformate fuel increases the severity of the poisoning effect. Although oxygen bleeding mitigates CO poisoning, an unrecoverable performance loss exists at high current densities due to competition for reaction sites between hydrogen adsorption and the heterogeneous catalysis of CO. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M2 formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels.  相似文献   

6.
In order to eliminate the local CO2 emissions from vehicles and to combat the associated climate change, the classic internal combustion engine can be replaced by an electric motor. The two most advantageous variants for the necessary electrical energy storage in the vehicle are currently the purely electrochemical storage in batteries and the chemical storage in hydrogen with subsequent conversion into electrical energy by means of a fuel cell stack. The two variants can also be combined in a battery electric vehicle with a fuel cell range extender, so that the vehicle can be refuelled either purely electrically or using hydrogen. The air compressor, a key component of a PEM fuel cell system, can be operated at different air excess and pressure ratios, which influence the stack as well as the system efficiency. To asses the steady state behaviour of a PEM fuel cell range extender system, a system test bench utilising a commercially available 30 kW stack (96 cells, 409 cm2 cell area) was developed. The influences of the operating parameters (air excess ratio 1.3 to 1.7, stack temperature 20 °C–60 °C, air compressor pressure ratio up to 1.67, load point 122 mA/cm2 to 978 mA/cm2) on the fuel cell stack voltage level (constant ambient relative humidity of 45%) and the corresponding system efficiency were measured by utilising current, voltage, mass flow, temperature and pressure sensors. A fuel cell stack model was presented, which correlates closely with the experimental data (0.861% relative error). The air supply components were modelled utilising a surface fit. Subsequently, the system efficiency of the validated model was optimised by varying the air mass flow and air pressure. It is shown that higher air pressures and lower air excess ratios increase the system efficiency at high loads. The maximum achieved system efficiency is 55.21% at the lowest continuous load point and 43.74% at the highest continuous load point. Future work can utilise the test bench or the validated model for component design studies to further improve the system efficiency.  相似文献   

7.
This paper reports the development of components in a stack assembly and measurements of electrochemical characteristics of a proton exchange membrane (PEM) fuel cell stack. A novel test fixture together with a superposition approach is utilized to assess the Ohmic resistance across the stack. Then, a Tafel-kinetic equation for describing the voltage and current curve for all processes including electrode activation, Ohmic resistance and mass transfer was reported. It was found that the Ohmic resistance inside the fuel cell stack was markedly impacted by clamping torque of the stack. An optimum clamping torque of 90 kgf cm was determined based on measured Ohmic resistance. Uniformity and stability in the stack was verified by measuring cell voltage and temperature distribution. Finally, stack durability was tested by impelling a buggy over a relatively long duration.  相似文献   

8.
In this paper, the exergy flow and exergy efficiency of a 3 kW proton-exchange-membrane fuel cell were investigated, and the regional characteristic of the distributed energy system was considered. In the environmental temperature range of 263–313 K, the difference in the total efficiency of the proposed system was 6%. On the other hand, the difference in the exergy total efficiency of the same temperature range was 30%. Moreover, as a result of examining how to improve the exergy efficiency of this system, certain improvement methods were proposed: (a) preheat the city-gas and air supplied to the system using exhaust heat and raise the combustion temperature; (b) preheat the water supplied to the system using exhaust heat; (c) change the catalyst material of each unit and reduce the amount of cooling of the reformed gas; and (d) examine the combined cycle power generation. The exergy efficiency, in the case of introducing the proposed system into individual homes in Sapporo, Tokyo, and Kagoshima, was evaluated. Consequently, when the system was introduced into a community with low outside air temperatures, exergy efficiency increased compared with communities with high outside air temperatures.  相似文献   

9.
In this study, a comprehensive performance analysis of a transportation system powered by a PEM fuel cell engine system is conducted thermodynamically both through energy and exergy approaches. This system includes system components such as a compressor, humidifiers, pressure regulator, cooling system and the fuel cell stack. The polarization curves are studied in the modeling and compared with the actual data taken from the literature works before proceeding to the performance modeling. The system performance is investigated through parametric studies on energy, exergy and work output values by changing operating temperature, operating pressure, membrane thickness, anode stoichiometry, cathode stoichiometry, humidity, reference temperature and reference pressure. The results show that the exergy efficiency increases with increase of temperature from 323 to 353 K by about 8%, pressure from 2.5 to 4 atm by about 5%, humidity from 97% to 80% by about 10%, and reference state temperature from 253 to 323 K by about 3%, respectively. In addition, the exergy efficiency increases with decrease of membrane thickness from 0.02 to 0.005 mm by about 9%, anode stoichiometry from 3 to 1.1 by about 1%, and cathode stoichiometry from 3 to 1.1 by about 35% respectively.  相似文献   

10.
《Journal of power sources》2002,111(2):239-247
Even trace amounts of CO in the fuel for a proton-exchange membrane fuel cell (PEMFC) could poison not only the anode, which is directly exposed to the fuel, but also the cathode, which is separated from the fuel by a proton-exchange membrane; and the performance decline of the cathode is sometimes more than that of the anode. Adsorption of CO on the cathode catalyst has been detected electrochemically, and this indicates that CO can pass through the membrane to reach the cathode. To reduce such a poisoning effect, fuel cell operation conditions (e.g. level of membrane humidification, gas pressure difference between cathode and anode), membrane and catalyst layer structures, and CO-tolerant cathode catalysts should be further explored.  相似文献   

11.
In this study, we deal with the exergoeconomic analysis of a proton exchange membrane (PEM) fuel cell power system for transportation applications. The PEM fuel cell performance model, that is the polarization curve, is previously developed by one of the authors by using the some derived and developed equations in literature. The exergoeconomic analysis includes the PEM fuel cell stack and system components as compressor, humidifiers, pressure regulator and the cooling system. A parametric study is also conducted to investigate the system performance and cost behaviour of the components, depending on the operating temperature, operating pressure, membrane thickness, anode stoichiometry and cathode stoichiometry. For the system performance, energy and exergy efficiencies and power output are investigated in detail. It is found that with an increase of temperature and pressure and a decrease of membrane thickness the system efficiency increases which leads to a decrease in the overall production cost. The minimization of the production costs is very crucial in commercialization of the fuel cells in transportation sector.  相似文献   

12.
Up to 30% of the expensive catalyst metal in conventional fuel cell catalysts is not utilized in fuel cells caused by an absence of contact to either the ion conducting, electron conducting or educt phase. This contact can be improved by in situ electrodeposition with a precursor layer which is mostly done in a galvanostatic mode in the literature. In this paper electrochemical deposition with a hydrogen depolarized anode is described and so a potentiostatic electrodeposition under the control of the working-electrode potential and dry working-electrode conditions is enabled. This potentiostatic electrodeposition with a hydrogen depolarized anode significantly increases the performance of the fuel cell.  相似文献   

13.
Turbulent flow in the distribution header of a PEM fuel cell stack   总被引:1,自引:0,他引:1  
A numerical investigation of the flowfield in a model distribution header manifold of a polymer electrolyte membrane fuel cell stack is conducted. The computational model simulates two segments of an experimental setup of a pair of model headers which replicate the headers of a fuel cell stack. The model headers consist of an inlet and outlet sections connected with a plate containing an array of holes that replicate the unit cells. The flow structures in the outlet header are rather complex and are the result of the superposition of a series of impinging jets in a confined space in the presence of crossflow. The flow from each hole, which represents an individual cell outlet, enters the outlet header as a jet stream and is subjected to a crossflow. Large Eddy Simulations (LES) are performed for a portion of the outlet header to investigate the complex turbulent flow and related structures under different crossflow conditions, and are complemented by Particle Image Velocimetry (PIV) measurements. The LES results show that two large vortical structures are formed in the header cross-section, with a high-speed round jet from the cell outlet holes forcing a diversion of the crossflow, dividing it into two separate branches. Investigation of the flow restructuring after a blockage of one of the jets is performed. Simulation results using a slot opening for the jet show flow instabilities. The results of this study highlight the unsteady and highly turbulent nature of the flow in the header and provide a characterization of the complex three-dimensional structure of the flow. The flowfield and flow structures may impact the overall pressure drop along the header and the effective cross-sectional area for the flow leaving the header. The observations and insights obtained from the LES simulation and PIV measurements point to the need to further investigate the impact on flow sharing in a stack of the flowfield development in the outlet header.  相似文献   

14.
A non-isothermal model of a proton exchange membrane (PEM) fuel cell in contact with interdigitated gas distributors has been performed. The model accounts for the major transports of convective and diffusive heat and mass transfer, electrode kinetics, and potential fields. The effects of flow orientation and total overpotential across a five-layer membrane-electrode assembly on the thermal behaviors in a PEM fuel cell are examined. A unique feature of the model is the implementation of a thermal-electrochemical algorithm to predict the fluid-phase temperature as well as the solid-matrix temperature in a PEM fuel cell. The simulation results reveal both the solid-matrix temperature and the fluid-phase temperature are increased with increasing total overpotential. Moreover, the fluid-phase and solid-matrix temperature distributions are significantly affected by the flow orientation in the PEM fuel cell. Replacing the parallel-flow geometry by the counter-flow geometry has an advantage of reducing the local maximum temperature inside the fuel cell. Thermal effects on the active material degradation and hence fuel cell durability will be incorporated in the future work.  相似文献   

15.
PEM Fuel Cells (PEMFCs), fueled by hydrogen, are electrochemical devices that convert hydrogen to useful power and two by-products: heat and water. They cover an important part of power applications namely in the transportation area, and in other practical applications that are either stationary or portable. In particular, the domestic refrigerator is one of the daily and indispensable applications but with a high-energy demand due to the high running time cycles. This work is a technical assessment of the feasibility of building a coupled “PEM Fuel Cell – Refrigerator” system. Real technical data for the refrigerator are collected, processed and evaluated. The obtained results show reasonable flows consumption rates. In fact, the refrigerator requires a flow rate of 1.607 slpm of hydrogen and 8 slpm of air at a pressure of respectively 3 atm and 1 atm. The water is produced at a rate of 1.285 10−3 slpm. The annual amount of hydrogen consumed by the refrigerator is estimated to 28, 47 kg. The energy provided to the refrigerator is about 130 W and the energy needed by the air compressor is 28, 24 W. A technical solution is suggested at the end of this work to reduce the start and stop cycles of the fuel cell.  相似文献   

16.
In previous work, a thermoelectric (TE) exhaust heat recovery subsystem for a high temperature polymer electrolyte membrane (HT-PEM) fuel cell stack was developed and modeled. Numerical simulations were conducted and have identified an optimized subsystem configuration and 4 types of compact heat exchangers with superior performance for further analysis.  相似文献   

17.
Fuel cells are energy transformation technologies and they are clean, don't damage to environment, have high efficiency and provide uninterruptible energy generation. Research and development studies about fuel cells have been done increasingly. In the recent years, fuel cell technologies have performed in some sectors such as military, industrial, space, portable, residential, transportation and trading.  相似文献   

18.
陈士忠  刘健  陈宁  吴玉厚 《可再生能源》2014,(12):1908-1916
双极板是质子交换膜燃料电池堆的重要部件之一,流场形状结构构成了双极板最主要特征。文章将近年来流场形状的研究现状进行梳理,通过对比分析各种流场设计方法,其对反应物与生成物的分布影响,流场内压力、热量及电流密度分布,流场制造成本等。总结各种流场优缺点,得出燃料电池不同实际应用情况下的最佳流场类型。以此为质子交换膜燃料电池流场的结构设计及研究发展方向提供可行性参考。  相似文献   

19.
《Journal of power sources》2006,159(2):1071-1077
A one-dimensional transient mathematical model is applied to simulate the carbon monoxide poisoning effect on the performance of a PEM fuel cell. Based on the CO kinetic model developed by Springer et al. [T.E. Springer, T. Rockward, T.A. Zawodzinski, S. Gottesfeld, J. Electrochem. Soc. 148 (2001) A11–A23], the transient behaviors of the CO poisoning process across the anode catalyst layer is investigated. The results show that the hydrogen coverage, θH, decreases with the time due to CO adsorption on the catalyst sites. A higher CO concentration results in fewer available catalyst sites for hydrogen electro-oxidation and a significant decrease in the response time to reach steady state, tss. Increasing the anode overpotential and the gas porosity would result in an increase in the current density, especially at low levels of CO concentration.  相似文献   

20.
Performance prediction of a commercial proton exchange membrane (PEM) fuel cell system by using artificial neural networks (ANNs) is investigated. Two artificial neural networks including the back-propagation (BP) and radial basis function (RBF) networks are constructed, tested and compared. Experimental data as well as preprocess data are utilized to determine the accuracy and speed of several prediction algorithms. The performance of the BP network is investigated by varying error goals, number of neurons, number of layers and training algorithms. The prediction performance of RBF network is also presented. The simulation results have shown that both the BP and RBF networks can successfully predict the stack voltage and current of a commercial PEM fuel cell system. Speed and accuracy of the prediction algorithms are quite satisfactory for the real-time control of this particular application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号