首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
《Synthetic Metals》2007,157(2-3):80-90
The synthesis of a hybrid material obtained by electropolymerization of a solution of pyrrole and [NEt4]2[Ni(dmit)2] (dmit = 1,3-dithiole-2-thione-4,5-dithiolato) in acetonitrile solution is reported. The material was characterized by cyclic voltammetry, UV–vis and infrared spectroscopies, scanning electron microscopy (SEM), atomic force microscopy (AFM) and thermal gravimetric analysis (TGA). The FTIR spectroscopy showed that the [Ni(dmit)2]2− anion has been inserted in the polypyrrole framework and was not destroyed or modified during the polymerization process. The voltammetric analysis indicated that the material has electroactivity and undergoes redox processes associated with the conducting polymer and the counteranion. The cyclic voltammetry results also suggest that the counteranion is not trapped in the PPy matrix undergoing anion exchange during the redox cycle of PPy. The PPy/[Ni(dmit)2]2− exhibits good thermal stability and a intrinsic conductivity value in the range of semiconductors (10−3 S cm−1).  相似文献   

2.
《Synthetic Metals》2001,122(2):409-412
A new complex [bmim][Ni(dmit)2]3 has been prepared, and its crystal structure and electrical conductivity where determined and measured. Crystallographic parameters for C26H15N2S30Ni3: triclinic system; space group: P-1; a=12.760(3), b=19.441(4), c=11.670(2) Å; α=102.00(3), β=117.10(3), γ=95.06(3)°; Z=2, R=0.0579 (I>2σ(I)). The conductivity of this salt at room temperature is 1.7×10−2 S cm−1 and it shows semiconduction in the temperature range of 110–290 K.  相似文献   

3.
Two new molecular solids, [1-NaMePid][Ni(mnt)2] (1) and [2-NaMePid][Ni(mnt)2] (2) (mnt2? = maleonitriledithiolate, [1-NaMePid]+ = 1-(1′-naphthylmethyl)piperidinium and [2-NaMePid]+ = 1-(2′-naphthylmethyl)piperidinium) have been characterized structurally and magnetically. Both [Ni(mnt)2]? anions and the cations of 1 and 2 form segregated column stacks, and the Ni(III) ions form a 1D zigzig alternating magnetic chain within a [Ni(mnt)2]? column through Ni···S, S···S, Ni···Ni, or π···π interactions. Some conformational features in two isomeric cations and the geometry of the individual [Ni(mnt)2]? anion for 1 and 2 remain similar, while the changes of the space filling properties, the packing requirements and the existence of the water molecule in 2 result in the difference of the stacking mode of the [Ni(mnt)2]? anions. Magnetic susceptibility measurements in the temperature range 2–300 K show that 1 is diamagnetism, while 2 exhibits a novel and interesting spin–gap transition around 16.8 K with antiferromagnetic interaction (J = ?4.6 cm?1) in the high-temperature phase (HT) and the spin–gap (Δ/kb = 68.5 K) in the low-temperature phase (LT).  相似文献   

4.
《Synthetic Metals》2006,156(16-17):1010-1016
Two anion-radical salts (ARS) of 7,7′,8,8′-tetracyanoquinodimethane (TCNQ) – (N-Me-2-NH2-Pz)(TCNQ)2 and (N-Me-Tetra-Me-Pz)(TCNQ)2 (N-Me-2-NH2-Pz, N-methyl-2-amino-pyrazinium-; N-Me-Tetra-Me-Pz, N-methyl-tetra-methyl-pyrazinium-ions) – were synthesized and characterized. Both salts (ARS) were found to be semiconductors with a room-temperature conductivity of 3.8 × 10−5 and 1.93 × 10−2 Ω−1 cm−1, respectively. For both salts a layered structure of cations and anion-radicals was discovered, where layers composed of cations alternate along the b-axis with the layers containing TCNQ anion-radicals. The cations in the (N-Me-2-NH2-Pz)(TCNQ)2 form pairs bonded by strongly shortened 1.97 (2) Å intermolecular hydrogen N(1)…H(3a) links.  相似文献   

5.
New hydrated sodium borate Na4[B10O16(OH)2]·4H2O has been synthesized under mild hydrothermal conditions at 170 °C. The structure was determined by single-crystal X-ray diffraction and further characterized by FT-IR, Raman spectra and DTA-TG. It crystallizes in the monoclinic space group Pc with a unit cell of dimension a = 11.323(2) Å, b = 6.5621(14) Å, c = 12.244(3) Å, α = 90°, β = 91.050(3)°, γ = 90°, V = 909.7(3) Å3, Z = 2. The crystal structure of Na4[B10O16(OH)2]·4H2O consists of Na–O polyhedra and [B10O16(OH)2]4− polyborate anions. Dehydration of this compound occurs in three steps and leads to an amorphous phase which undergoes crystallization.  相似文献   

6.
《Intermetallics》2007,15(11):1453-1458
Effects of the Cr addition on glass formation, magnetic and corrosion properties of {[(Fe0.6Co0.4)0.75B0.2Si0.05]0.96Nb0.04}100xCrx (x = 1, 2, 3, 4 at.%) alloys have been investigated. It was found that the addition of Cr element slightly decreases the glass-forming ability (GFA), but is very effective in increasing corrosion resistance and improving soft magnetic properties for this Fe–Co–B–Si–Nb bulk glassy alloy within the composition range examined. The Fe–Co–B–Si–Nb–Cr alloys exhibit high GFA. Full glassy rods with diameters up to 4 mm can be synthesized by copper mold casting. The Fe-based bulk glassy alloys (BGAs) exhibit a high saturation magnetization of 0.81–0.98 T as well as excellent soft magnetic properties, i.e., extremely low coercive force of 0.6–1.6 A/m and super-high initial permeability of 26,400–34,100. Furthermore, corrosion measurements show that corrosion rate and corrosion current density of these Fe-based BGAs in 0.5 M NaCl solution decrease from 7.0 × 10−1 to 1.6 × 10−3 mm/year and 3.9 × 10−6 to 8.7 × 10−7 A/cm2, respectively, with increasing Cr content from 0 to 4 at.%. The success of synthesizing the new Fe-based BGAs exhibiting simultaneously high GFA as well as excellent good soft magnetic properties combined with high saturation magnetization and enhanced corrosion resistance allows us to expect future progress as a new type of soft magnetic materials.  相似文献   

7.
《Acta Materialia》2007,55(18):6176-6181
Novel solid solutions of (0.90  x)Pb(Mg1/3Nb2/3)O3–PbTiO3–0.10Pb(Fe1/2Nb1/2)O3, where x = 0.29, 0.31, 0.33 and 0.35, were investigated from the viewpoint of structural phase transformation, dielectric, ferroelectric and piezoelectric properties. X-ray diffraction and Raman scattering measurements demonstrated that their phase structures experienced a gradual transition process from rhombohedral to tetragonal phase near the morphotropic phase boundary (MPB) region with increasing PbTiO3 content (x). Corresponding to the structural phase transition near the MPB, large dielectric constants (εr) were obtained at the compositions of x = 0.31 (εr = 3094 at 1 kHz) and x = 0.33 (εr = 2927 at 1 kHz). The maximum remnant polarization (Pr = 26.5 μC cm−2) was obtained at the composition x = 0.31, and the electromechanical factor (kp = 0.59) and piezoelectric coefficient (d33 = 545 pC N−1) were also maximized at this composition, which indicated the enhanced electrical properties near the MPB.  相似文献   

8.
The crystal structure of the compound in the Al-rich region of the Ti–Ni–Al system, τ5–TiNi2?xAl5, x = 0.48, has been derived from X-ray powder and single crystal, neutron powder and electron diffraction (space group I4/mmm, a = 0.3984(2) nm, c = 1.4073(3) nm, RF2 = 0.0133). Titanium atoms were unambiguously located from neutron powder data. τ5 is isotypic with the crystal structure of ZrNi2Al5. Detailed transmission electron microscopy (TEM) in several crystallographic directions confirmed the lattice parameters and crystal symmetry. Although occupancy of Ni in the 4e site revealed a defect (occ. = 0.76), no significant homogeneity region was observed for this phase at 1020°C. Rietveld analyses of X-ray powder diffraction data for the Zr- and Hf-homologues confirmed for both compounds isotypism and revealed defects in the Ni sites and to a lesser extent also in the Al sites: ZrNi2?xAl5?y, x = 0.4, y = 0.4 and HfNi2?xAl5?y, x = 0.5, y = 0.2. The crystallographic relations among the structure types of Cu, TiAl3, ZrNi2Al5 and Zr(Ni,Ga)7 have been defined in terms of a Bärnighausen scheme.  相似文献   

9.
《Intermetallics》2007,15(9):1202-1207
The thermoelectric properties of Sb-doped Mg2Si (Mg2Si:Sb = 1:x(0.001  x  0.02)) fabricated by spark plasma sintering have been characterized by Hall effect measurements at 300 K and by measurements of electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) between 300 and 900 K. Sb-doped Mg2Si samples are n-type in the measured temperature range. The electron concentration of Sb-doped Mg2Si at 300 K ranges from 2.2 × 1019 for the Sb concentration, where x = 0.001, to 1.5 × 1020 cm−3 for x = 0.02. First-principles calculation revealed that Sb atoms are expected to be primarily located at the Si sites in Mg2Si. The electrical resistivity, Seebeck coefficient, and thermal conductivity are strongly affected by the Sb concentration. The sample x = 0.02 shows a maximum value of the figure of merit ZT, which is 0.56 at 862 K.  相似文献   

10.
《Acta Materialia》2008,56(17):4876-4889
LnBaCo2O5+δ (Ln = La, Pr, Nd, Sm, Gd, and Y) was synthesized via an EDTA–citrate complexing process. The particular Ln3+ dopant had a significant effect on the oxide’s phase structure/stability, oxygen content, electrical conductivity, oxygen permeability, and cathode performance. Stable, cation-ordered oxides with layered lattice structures were obtained with medium-sized Ln3+ ions over a wide range of oxygen partial pressures, a property essential for applications as oxygen separation membranes and solid oxide fuel cell (SOFC) cathodes. PrBaCo2O5+δ demonstrated the highest oxygen flux (∼5.09 × 10−7 mol cm−2 s−1 at 900 °C), but this value was still significantly lower than that of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite (∼3.1 × 10−6 mol cm−2 s−1 at 900 °C). The observed difference was attributed to the much longer diffusion distance through a polycrystalline membrane with a layered lattice structure than through cubic perovskite because bulk diffusion was the rate-limiting step of permeation. An area-specific resistance of ∼0.213 Ω cm2 was achieved at 600 °C with a PrBaCo2O5+δ cathode, suggesting that the layer-structured oxides were promising alternatives to ceramic membranes for SOFC cathodes.  相似文献   

11.
《Acta Materialia》2005,53(13):3703-3711
Amorphous (Ni0.6Nb0.4)100−xZrx (x = 0, 20, 30, 40 and 50 at.%) alloys were prepared by the melt-spinning technique, and the hydrogen permeation through those alloy membranes was examined. The local atomic structure in these alloys was also investigated by radial distribution function (RDF) analysis. Moreover, hydrogen solubility and diffusivity were also measured in order to discuss the mechanism for hydrogen permeation. The permeability of the Ni–Nb–Zr amorphous alloys increases with Zr content and temperature. The maximum hydrogen permeability is 1.59 × 10−8 mol m−1 s−1 Pa−1/2 at 673 K for the (Ni0.6Nb0.4)50Zr50 amorphous alloy. The (Ni0.6Nb0.4)50Zr50 amorphous alloy showed larger hydrogen solubility and diffusivity than the (Ni0.6Nb0.4)70Zr30 amorphous alloy. As the result, the (Ni0.6Nb0.4)50Zr50 amorphous alloy showed higher hydrogen permeability than the (Ni0.6Nb0.4)70Zr30 amorphous alloy at 673 K. The RDF analysis shows that the atomic distance between the Zr atoms increases by hydrogenation. The chemical ordering such that the number of Zr coordinates is much higher than that of Ni and Nb coordinates was found in the (Ni0.6Nb0.4)70Zr30 and (Ni0.6Nb0.4)50Zr50 amorphous alloys. The relation between the amorphous local structure and the permeation was discussed in detail.  相似文献   

12.
The microstructure and the hydrogen permeability of the Nb-rich Nb–Ti–Ni alloy, i.e., the Nb56Ti23Ni21 alloy were investigated and compared with those of the Nb40Ti30Ni30 alloy. The Nb56Ti23Ni21 alloy consisted of a combination of the primary phase bcc- (Nb, Ti) solid solution with the eutectic phase {bcc- (Nb, Ti) + B2-TiNi}. The volume fraction of the former and the latter phases were 62 and 38 vol.%, respectively. The Nb56Ti23Ni21 alloy showed the higher Φ value of 3.47 × 10−8 (mol H2 m−1 s−1 Pa−0.5) at 673 K, which is 1.8 times higher than that of the Nb40Ti30Ni30 alloy, which has been reported to be highest in the Nb–Ti–Ni system. The present work demonstrated that the Nb-rich Nb–Ti–Ni alloys consisting of only the primary phase bcc- (Nb, Ti) and the eutectic phase {bcc- (Nb, Ti) + B2-TiNi} are promising for the hydrogen permeation membrane.  相似文献   

13.
Ni–Cu–Co alloys were studied for the development of textured substrates for YBCO-coated conductor application. Three compositions were obtained by adding a fixed amount of 3 at.% Co to the binary NixCu100?x, where x = 40, 50 and 60. Cube texture was induced by conventional cold rolling followed by high-temperature annealing. The structural, microstructural, morphological, electrical, magnetic, mechanical and oxidation properties were evaluated and compared with those exhibited by the binary Ni–Cu alloy, as well as by Ni–W and pure Ni. A low Ni content is detrimental for the development of the cube texture with respect to higher concentrations. Nevertheless, the use of high annealing temperatures enabled an area fraction of cube orientation as high as 95% to be obtained for x = 40, and >97.5% in the case of Ni-richer alloys. Compared with Ni and Ni–W, Ni–Cu–Co alloys oxidize more easily and exhibit higher electrical resistance. In addition, the presence of copper enables the Curie temperature to be reduced to 60 K for x = 40 and to 155 K for x = 50. Furthermore, the introduction of cobalt reduces the oxidation rate at temperatures normally used for the deposition of ceramic buffer layers, thus allowing the successful development of a CeO2/YSZ/CeO2 architecture on ternary Ni–Cu–Co alloy. YBCO/buffer multilayer architecture deposited by pulsed laser deposition on a selected alloy tape exhibits a critical current density exceeding 1 MA cm?2 at 77 K in self-field, indicating that this alloy substrate is suitable for YBCO-coated conductor application.  相似文献   

14.
A novel multi-core structure cermets consisted of both black-core/rim structure and grey-core/rim structure were obtained by partially replacing TiCN powder with (Ti,20W,15Ta)CN powder via low-pressure sintering process. The toughness and strength of TiCN-based cermets were optimized and its feature of high hardness was maintained simultaneously. Systematically, it was investigated that the influences of various weight ratios of both (Ti,20W,15Ta)CN/TiCN and Co/Ni on the microstructure and mechanical properties of the multi-core cermets. The results showed that the addition of (Ti,20W,15Ta)CN powder could cause the refinement of the core size and the occurrence of the secondary phase (W,Mo,Ti)3 + x(Co,Ni)3  xC (0 < x  1), both of which are responsible for the significant improvement of the mechanical properties. The appearance of the secondary phase was found under two circumstances, one was when the weight ratio of (Ti,20W,15Ta)CN/TiCN was 6:4 while that of Co/Ni was 5:5(cermet M60) and the other was when that of (Ti,20W,15Ta)CN/TiCN was 5:5 with pure Co binder (cermet C50). And there is a monotonous escalation of the fracture toughness (KIC) of the cermets while increasing the (Ti,20W,15Ta)CN content. The optimal comprehensive mechanical performance was found in cermet M60 with transverse rupture strength (TRS) of 1903.32 MPa, Vickers hardness (HV30) of 16.33 GPa and fracture toughness of 12.19 MPa·m1/2.  相似文献   

15.
《Intermetallics》2006,14(10-11):1326-1331
To improve the high-temperature strength of NiAl/Cr(Mo) eutectic alloys, the effect of Ti-addition on microstructure and mechanical properties was examined. Three directionally solidified (DS) alloys with the composition of Ni–(33  x)Al–31Cr–3Mo–xTi (x = 0, 3 and 5 at.%, respectively), denoted 0Ti-, 3Ti- and 5Ti-alloys hereafter, were prepared. Temperature dependence of the yield stress and the room temperature fracture toughness of these DS alloys was examined. The aligned lamellae with B2-NiAl and A2-Cr(Mo) were formed in 0Ti-alloy, but the formation of lamellar structure was hindered by the Ti-addition. Cellular microstructures containing short plate shapes of Cr(Mo) phases were obtained in 3Ti- and 5Ti-alloys. In 5Ti-alloy, the precipitation of the L21-Ni2AlTi was confirmed in NiAl matrix phase after the DS treatment. The Ti-addition induced a significant increase in high-temperature strength accompanied by a large deterioration of room temperature fracture toughness. The fracture toughness of 5Ti-alloy showed the low value of about 4 MPa m1/2 because of the disturbance of microstructure.  相似文献   

16.
《Synthetic Metals》2001,122(2):233-235
Preparation of new organic composites by direct solid–solid charge-transfer reaction between bis(ethylenedioxy)tetrathiafulvalene (BO) and iodine is described. We present also dc electrical conductivity investigation of composites: (BO)x/I, where 0.5<x<1.5. In the best case, corresponding to x=1, a metallic behaviour is observed down to 200 K prior to any annealing stage with a room temperature conductivity as high as 12.8 S cm−1.  相似文献   

17.
A single-phase green–red-emitting phosphor, Ca13.7Eu0.3Mg2?xMnx[SiO4]8 (CMS:Eu2+,Mn2+), was prepared by a solid-state reaction, and its energy transfer from Eu2+ to Mn2+ was investigated as a function of Mn2+ concentration. To explore the substitution of an Mn2+ site for each Mg site, a determination of the number of Mg substitutional sites was carried out using the Rietveld refinement method and bond valence sums. The dipole–dipole interaction was a dominant energy transfer mechanism of the electric multipolar character of CMS:Eu2+,Mn2+. The critical distance was calculated as 7.5 Å when using critical concentrations of Eu2+ and Mn2+. When CMS:Eu2+,Mn2+ was incorporated with an encapsulant in ultraviolet (λmax = 400 nm) light-emitting diodes (LEDs), white light with a color rendering index of 67 under a forward bias current of 20 mA was obtained. The results of this work indicate that CMS:Eu2+,Mn2+ could be applicable to a single-phase phosphor for white LEDs under a near-ultraviolet source.  相似文献   

18.
《Acta Materialia》2007,55(10):3547-3553
A series of amorphous Ni-doped CNx films with ∼23 at.% Ni were fabricated using facing-target sputtering at different nitrogen partial pressures (PN). The films were composed of ∼1–4 nm Ni-rich particles embedded in a CNx matrix and turn from ferromagnetic at low temperatures to superparamagnetic at room temperature. The largest negative magnetoresistance (MR = [R(H)  R(0)]/R(0)) reaches −59% at a PN of 4% and a temperature of 3 K. With a decrease of PN from 4% to 0%, the electrical transport mechanism changes from tunneling to variable-range hopping and the maximum MR drops from ∼59% to ∼3.8%. The MRH curves show a weak saturation trend in a high-field regime and the MRT curves follow the relation of log|MR|  T below 20 K for all the films, despite the difference in transport mechanism. The origin of the large MR (−59%) can be ascribed to a spin-related high-order tunneling process.  相似文献   

19.
The influence of Mg value in the MoO3–Mg–C mixture on the molybdenum carbide formation and the mechanism of reactions during mechanochemical process were investigated. In keeping with this aim, magnesium and carbon contents of the mixture were changed according to the following reaction: 2MoO3 + (6  x) Mg + (1 + x) C = (6  x) MgO + Mo2C + x CO. The value of x varied from 0 to 6. Differential thermal analysis (DTA) results for sample with stoichiometric ratio (x = 0) revealed that in the early stage, carbon reduced the MoO3 to MoO2 and subsequently highly exothermic magnesiothermic MoO2 reduction occurred after magnesium melting. Also, it was indicated that the exothermic reaction temperature shifted to before magnesium melting in the 11 h-milled sample (x = 0) and all the exothermic reactions happened, simultaneously. According to the experimental findings, molybdenum carbide (Mo2C) was synthesized in the mixture powder with stoichiometric ratio (x = 0) after 12 h milling process and the type of reactions was mechanically induced self-sustaining reaction (MSR). However, at lower Mg content in the MoO3–Mg–C mixture (0 < x  2), the magnesiothermic reduction occurred in MSR mode and activated the carbothermal reaction. Further decrease in Mg value (2 < x  3) resulted in MSR mode magnesiothermic reaction and gradual carbothermal reduction. In samples with lower magnesium contents, partial molybdenum oxide reduction proceeded through a gradual mode magnesiothermic reaction.  相似文献   

20.
《Synthetic Metals》2006,156(5-6):488-494
PPy|SO4 and PPy|ClO4 films have been synthesized and investigated in K2SO4, ZnSO4 and NaClO4 aqueous solutions by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and electron probe microanalysis (EPMA) methods. On the basis of obtained data and calculated impedance parameters as the potential functions, the role of different processes (diffusion of ions, double-layer charging, adsorption and charge transfer) in oxidized, partially reduced and reduced PPy films is estimated. The lowest pseudocapacitance values (from n × 10−6 to n × 10−4 μF cm−2 for 1 μm film), independent of solution concentration, were established for PPy|SO4 in ZnSO4. This phenomenon is related with strongly aggravated film reduction process in the solution of double-charged cations. In the case of PPy|ClO4 in NaClO4 and PPy|SO4 in K2SO4,where the mono-charged cations participate in redox process, the capacitance values are in the range from: n × 10−3 to n × 10−2 μF cm−2 and even somewhat higher for PPy|ClO4 system at oxidized state. The calculated effective diffusion coefficients of ions D remain inside the range from n × 10−12 to n × 10−14 cm2 s−1 for PPy|SO4 in 0.1 M K2SO4 and PPy|ClO4 in 0.1 M NaClO4 aqueous solution. In the case of PPy|SO4 film in ZnSO4 solution the D values are essentially lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号