首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of power sources》2006,160(1):353-358
The performances of the proton exchange membrane fuel cell (PEMFC), direct formic acid fuel cell (DFAFC) and direct methanol fuel cell (DMFC) with sulfonated poly(ether sulfone) membrane are reported. Pt/C was coated on the membrane directly to fabricate a MEA for PEMFC operation. A single cell test was carried out using H2/air as the fuel and oxidant. A current density of 730 mA cm−2 at 0.60 V was obtained at 70 °C. Pt–Ru (anode) and Pt (cathode) were coated on the membrane for DMFC operations. It produced 83 mW cm−2 maximum power density. The sulfonated poly(ether sulfone) membrane was also used for DFAFC operation under several different conditions. It showed good cell performances for several different kinds of polymer electrolyte fuel cell applications.  相似文献   

2.
《Journal of power sources》2006,153(2):228-233
The demand for a solid polymer electrolyte membrane (SPEM) for fuel-cell systems, capable of withstanding temperatures above 130 °C, decreasing the electrode-catalyst loadings and reducing poisoning by carbon monoxide, has prompted this study. A novel, low-cost, highly conductive, nanoporous proton-conducting membrane (NP-PCM) based on a polytetrafluoroethylene (PTFE) backbone has been developed. It comprises non-conductive nano-size ceramic powder, PTFE binder and an aqueous acid. The preparation procedures were studied and the membrane was characterized with the use of: SEM, EDS, pore-size-distribution measurements (PSD), TGA–DTA and electrochemical methods. The ionic conductivity of a membrane doped with 3 M sulfuric acid increases with the ceramic powder content and reaches 0.22 S cm−1 at 50% (v/v) silica. A non-optimized direct-methanol fuel cell (DMFC) with a 250 μm thick membrane has been assembled. It demonstrated 50 and 130 mW cm−2 at 80 and 130 °C, respectively. Future study will be directed to improving the membrane-preparation process, getting thinner membranes and using this membrane in a hydrogen-fed fuel cell.  相似文献   

3.
《Journal of power sources》2005,144(1):141-145
A micro direct methanol fuel cell (μDMFC) with active area of 1.625 cm2 has been developed for high power portable applications and its electrochemical characterization carried out in this study. The fragility of the silicon wafer makes it difficult to compress the cell for good sealing and hence to reduce contact resistance in the Si-based μDMFC. We have instead used very thin stainless steel plates as bipolar plates with the flow field machined by photochemical etching technology. For both anode and cathode flow fields, widths of both the channel and rib were 750 μm, with a channel depth of 500 μm. A gold layer was deposited on the stainless steel plate to prevent corrosion. This study used an advanced MEA developed in-house featuring a modified anode backing structure with a compact microporous layer. Maximum power density of the micro DMFC reached 62.5 mW cm−2 at 40 °C, and 100 mW cm−2 at 60 °C at atmospheric pressure, which almost doubled the performance of our previous Si-based μDMFC.  相似文献   

4.
《Journal of power sources》2006,157(1):222-225
Sulfonated polysulfones (SPSf) with different degree of sulfonation (DS) have been synthesized and evaluated as proton exchange membranes in direct methanol fuel cell (DMFC). The membranes have been characterized by ion exchange capacity (IEC), proton conductivity, liquid uptake, and single DMFC polarization measurements. The proton conductivities of the SPSf membranes increase with increasing sulfonation, but are lower than that of Nafion 115. Within the range of sulfonation of 50–70%, the SPSf membranes exhibit better performances in DMFC than Nafion 115 at lower methanol concentrations (1 M) despite lower proton conductivities due to suppressed methanol permeability and crossover. However, the performances of SPSf membranes at higher methanol concentrations (2 M) are inferior to that of Nafion 115 at current densities higher than about 50 mA cm−2 as the suppression in methanol crossover could not quite compensate for the lower proton conductivities.  相似文献   

5.
《Journal of power sources》2002,109(2):500-506
An all-solid-state supercapacitor is fabricated and optimized using a Nafion® membrane and an ionomer. The device shows good capacitance (ca. 200 F g−1) as demonstrated by cyclic voltammograms (CVs) and charge–discharge curves. The supercapacitor exhibits a relatively stable capacitance during l0,000 cycles of operation. A hybrid system comprising a direct methanol fuel cell (DMFC) and an all-solid-state supercapacitor has been designed and tested. It is confirmed that the power discharged by the supercapacitor is transferred effectively to the DMFC. The power of the hybrid is immediately improved by 30% compared with that of a DMFC alone operating at 25 °C. The possibilities of using this system for high energy and high instantaneous power devices and integrated fabrication processes are discussed.  相似文献   

6.
《Journal of power sources》2006,161(1):282-289
A novel MEA is fabricated to improve the performance of air-breathing direct methanol fuel cells. A diffusion barrier on the anode side is designed to control methanol transport to the anode catalyst layer and thus suppressing the methanol crossover. A catalyst coated membrane with a hydrophobic gas diffusion layer on the cathode side is employed to improve the oxygen mass transport. It is observed that the maximum power density of the advanced DMFC with 2 M methanol solution achieves 65 mW cm−2 at 60 °C. The value is nearly two times more than that of a commercial MEA. At 40 °C, the power densities operating with 1 and 2 M methanol solutions are over 20 mW cm−2 with a cell potential at 0.3 V.  相似文献   

7.
《Journal of power sources》2006,162(2):1232-1235
A vapor fed passive direct methanol fuel cell (DMFC) is proposed to achieve a high energy density by using pure methanol for mobile applications. Vapor is provided from a methanol reservoir to the membrane electrode assembly (MEA) through a vaporizer, barrier and buffer layer. With a composite membrane of lower methanol cross-over and diffusion layers of hydrophilic nanomaterials, the humidity of the MEA was enhanced by water back diffusion from the cathode to the anode through the membrane in these passive DMFCs. The humidity in the MEA due to water back diffusion results in the supply of water for an anodic electrochemical reaction with a low membrane resistance. The vapor fed passive DMFC with humidified MEA maintained 20–25 mW cm−2 power density for 360 h and performed with a 70% higher fuel efficiency and 1.5 times higher energy density when compared with a liquid fed passive DMFC.  相似文献   

8.
《Journal of power sources》2006,163(1):433-439
The fabrication and properties of a hybrid membrane based on cesium salt of heteropoly acid, zirconium phosphate and polyvinyl alcohol are described. The fabricated membranes were characterized for their intra molecular interaction, thermal stability, surface morphology, water content and surface-charge properties using Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), water uptake and ion-exchange capacity measurements. These membranes showed reduced methanol crossover (for possible application in DMFC) relative to that of Nafion® 115. At 50% of relative humidity, the protonic conductivity of the hybrid membranes was in the range of 10−3 to 10−2 S cm−1. The feasibility of these hybrid membranes as proton conducting electrolyte in direct methanol fuel cell (DMFC) was investigated and preliminary results are compared with that of Nafion® 115. A maximum power density of 6 mW cm−2 with PVA–ZrP–Cs2STA hybrid membrane was obtained with the cell operated in passive mode at 373 K and atmospheric pressure. Open circuit voltage of the cell operated with hybrid membranes are high compared to that of Nafion® 115 indicating reduced methanol crossover.  相似文献   

9.
《Journal of power sources》2005,145(2):485-494
In order to increase the chemical/thermal stability of the sulfonated poly(ether ether ketone) (sPEEK) polymer for direct methanol fuel cell (DMFC) applications at medium temperatures (up to 130 °C), novel inorganic–organic composite membranes were prepared using sPEEK polymer as organic matrix (sulfonation degree, SD, of 42 and 68%) modified with zirconium phosphate (ZrPh) pretreated with n-propylamine and polybenzimidazole (PBI). The final compositions obtained were: 10.0 wt.% ZrPh and 5.6 wt.% PBI; 20.0 wt.% ZrPh and 11.2 wt.% PBI. These composite membranes were tested in DMFC at several temperatures by evaluating the current–voltage polarization curve, open circuit voltage (OCV) and constant voltage current (CV, 35 mV). The fuel cell ohmic resistance (null phase angle impedance, NPAI) and CO2 concentration in the cathode outlet were also measured. A method is also proposed to evaluate the fuel cell Faraday and global efficiency considering the CH3OH, CO2, H2O, O2 and N2 permeation through the proton exchange membrane (PEM) and parasitic oxidation of the crossover methanol in the cathode. In order to improve the analysis of the composite membrane properties, selected characterization results presented in [V.S. Silva, B. Ruffmann, S. Vetter, A. Mendes, L.M. Madeira, S.P. Nunes, Catal. Today, in press] were also used in the present study. The unmodified sPEEK membrane with SD = 42% (S42) was used as the reference material. In the present study, the composite membrane prepared with sPEEK SD = 68% and inorganic composition of 20.0 wt.% ZrPh and 11.2 wt.% PBI proved to have a good relationship between proton conductivity, aqueous methanol swelling and permeability. DMFC tests results for this membrane showed similar current density output and higher open circuit voltage compared to that of sPEEK with SD = 42%, but with much lower CO2 concentration in the cathode outlet (thus higher global efficiency) and higher thermal/chemical stability. This membrane was also tested at 130 °C with pure oxygen (cathode inlet) and achieved a maximum power density of 50.1 mW cm−2 at 250 mA cm−2.  相似文献   

10.
《Journal of power sources》2006,155(2):203-212
The characteristics of a 50 W direct methanol fuel cell (DMFC) stack were investigated under various operating conditions in order to understand the behavior of the stack. The operating variables included the methanol concentration, the flow rate and the flow direction of the reactants (methanol and air) in the stack. The temperature of the stack was autonomously increased in proportion to the magnitude of the electric load, but it decreased with an increase in the flow rates of the reactants. Although the operation of the stack was initiated at room temperature, under a certain condition the internal temperature of the stack was higher than 80 °C. A uniform distribution of the reactants to all the cells was a key factor in determining the performance of the stack. With the supply of 2 M methanol, a maximum power of the stack was found to be 54 W (85 mW cm−2) in air and 98 W (154 mW cm−2) in oxygen. Further, the system with counter-flow reactants produced a power output that was 20% higher than that of co-flow system. A post-load behavior of the stack was also studied by varying the electric load at various operating conditions.  相似文献   

11.
《Journal of power sources》2005,145(2):101-107
Pure layered phosphates of varying crystalline phases and crystallinity and composites of gradient layers of zirconium phosphate in Nafion 117-membranes have been prepared. The proton conductivity and, in case of the composites, also the dynamic mechanical properties of these materials were measured under different conditions of temperature and humidity. Membrane-electrode assemblies with low platinum catalyst loading of 0.4 mg cm−2 Pt at the cathode and 1.9 mg cm−2 Pt–Ru at the anode were examined in a direct methanol fuel cell (DMFC) at medium temperatures (130 °C). The conductivity of the layered zirconium phosphates is superior to the titanium phosphates and increases with decreasing crystallite size. The electrical performance of the composites in a DMFC-environment is slightly decreased as compared to the unmodified membrane but taking the reduced methanol crossover into account, higher efficiencies can be reached with the zirconium phosphate modified membrane. Furthermore, the mechanical properties are significantly improved by the presence of the inorganic compound.  相似文献   

12.
《Journal of power sources》2002,110(1):144-151
In order to identify a proton-conducting polymer membrane suitable for replacing Nafion® 117 in direct methanol fuel cells (DMFC), we prepared a cross-linked copolymer of hydrophilic 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and 2-hydroxyethyl methacrylate (HEMA). Fumed silicas were also added in an attempt to increase the amount of water adsorbed by the membrane and to enhance water retention. Hydrated copolymer membranes adsorbed significantly more water than Nafion® 117, but were no better at retaining water during drying under ambient conditions. Films composed of 4% AMPS—96% HEMA had a room temperature proton conductivity of 0.029 S cm−1, which increased to 0.06 S cm−1 at 80 °C.  相似文献   

13.
《Journal of power sources》2004,133(2):175-180
Adoption of a sintered stainless steel fiber felt was evaluated as gas diffusion backing in air-breathing direct methanol fuel cell (DMFC). By using a sintered stainless steel fiber felt as an anodic gas diffusion backing, the peak power density of an air-breathing DMFC is 24 mW cm−2, which is better than that of common carbon paper. A 30-h-life test indicates that the degraded performance of the air-breathing DMFC is primarily due to the water flooding of the cathode. Twelve unit cells with each has 6 cm2 of active area are connected in series to supply the power to a mobile phone assisted by a constant voltage diode. The maximum power density of 26 mW cm−2 was achieved in the stack, which is higher than that in single cell. The results show that the sintered stainless steel felt is a promising solution to gas diffusion backing in the air-breathing DMFC, especially in the anodic side because of its high electronical conductivity and hydrophilicity.  相似文献   

14.
《Journal of power sources》2006,162(2):1073-1076
A 28-W direct borohydride–hydrogen peroxide fuel-cell stack operating at 25 °C is reported for contemporary portable applications. The fuel cell operates with the peak power-density of ca. 50 mW cm−2 at 1 V. This performance is superior to the anticipated power-density of 9 mW cm−2 for a methanol–hydrogen peroxide fuel cell. Taking the fuel efficiency of the sodium borohydride–hydrogen peroxide fuel cell as 24.5%, its specific energy is ca. 2 kWh kg−1. High power-densities can be achieved in the sodium borohydride system because of its ability to provide a high concentration of reactants to the fuel cell.  相似文献   

15.
Among the possible systems investigated for energy production with low environmental impact, polymeric electrolyte membrane fuel cells (PEMFCs) are very promising as electrochemical power sources for application in portable technology and electric vehicles. For practical applications, operating FCs at temperatures above 100 °C is desired, both for hydrogen and methanol fuelled cells. When hydrogen is used as fuel, an increase of the cell temperature produces enhanced CO tolerance, faster reaction kinetics, easier water management and reduced heat exchanger requirement. The use of methanol instead of hydrogen as a fuel for vehicles has several practical benefits such as easy transport and storage, but the slow oxidation kinetics of methanol needs operating direct methanol fuel cells (DMFCs) at intermediate temperatures. For this reason, new membranes are required. Our strategy to achieve the goal of operating at temperatures above 120 °C is to develop organic/inorganic hybrid membranes. The first approach was the use of nanocomposite class I hybrids where nanocrystalline ceramic oxides were added to Nafion. Nanocomposite membranes showed enhanced characteristics, hence allowing their operation up to 130 °C when the cell was fuelled with hydrogen and up to 145 °C in DMFCs, reaching power densities of 350 mW cm−2. The second approach was to prepare Class II hybrids via the formation of covalent bonds between totally aromatic polymers and inorganic clusters. The properties of such covalent hybrids can be modulated by modifying the ratio between organic and inorganic groups and the nature of the chemical components allowing to reach high and stable conductivity values up to 6.4 × 10−2 S cm−1 at 120 °C.  相似文献   

16.
《Journal of power sources》2006,159(2):1042-1047
The direct methanol fuel cell (DMFC) is regarded as a promising candidate in portable electronic power applications. Bipolar plate stacks were systematically studied by controlling the operating conditions, and by adjusting the stack structure design parameters, to develop more commercial DMFCs. The findings indicate that the peak power of the stack is influenced more strongly by the flow rate of air than by that of the methanol solution. Notably, the stack performance remains constant even as the channel depth is decreased from 1.0 to 0.6 mm, without loss of the performance in each cell. Furthermore, the specific power density of the stack was increased greatly from ∼60 to ∼100 W l−1 for stacks of 10 and 18 cells, respectively. The current status of the work indicates that the power output of an 18-cell short stack reaches 33 W in air at 70 °C. The outer dimensions of this 18-cell short stack are only 80 mm × 80 mm × 51 mm, which are suitable for practical applications in 10–20 W DMFC portable systems.  相似文献   

17.
《Journal of power sources》2006,160(1):97-104
The performance of a single-cell direct methanol fuel cell (DMFC) using carbon nanotube-supported Pt–Ru (Pt–Ru/CNT) as an anode catalyst has been investigated. In this study, the Pt–Ru/CNT electrocatalyst was successfully synthesized using a modified polyol approach with a controlled composition very close to 20 wt.%Pt–10 wt.%Ru, and the anode was prepared by coating Pt–Ru/CNT electrocatalyst on a wet-proof carbon cloth substrate with a metal loading of about 4 mg cm−2. A commercial gas diffusion electrode (GDE) with a platinum black loading of 4 mg cm−2 obtained from E-TEK was employed as the cathode. The membrane electrode assembly (MEA) was fabricated using Nafion® 117 membrane and the single-cell DMFC was assembled with graphite endplates as current collectors. Experiments were carried out at moderate low temperatures using 1 M CH3OH aqueous solution and pure oxygen as reactants. Excellent cell performance was observed. The tested cell significantly outperformed a comparison cell using a commercial anode coated with carbon-supported Pt–Ru (Pt–Ru/C) electrocatalyst of similar composition and loading. High conductivity of carbon nanotube, good catalyst morphology and suitable catalyst composition of the prepared Pt–Ru/CNT electrocatalyst are considered to be some of the key factors leading to enhanced cell performance.  相似文献   

18.
《Journal of power sources》2006,157(1):207-211
Composite polymer electrolyte membranes with nano-TiO2 films are fabricated by deposition of titania nanoparticles from a sol solution. Measurements of ion conductivity, methanol permeability and single-cell performance of the modified Nafion membranes are conducted. The TiO2 films adhere well and are crack-free. The protonic conductivity of the composite membranes decreases with increasing titania content, but methanol permeability is reduced. Preliminary tests on a single-cell of a direct methanol fuel cell (DMFC) indicate that a titania-coated membrane with 0.009 mg cm−2 content gives the highest cell voltage and maximum power density.  相似文献   

19.
The use of various Nafion membranes, including Nafion 117, 115 and 112 with respective thicknesses of 175 μm, 125 μm and 50 μm, in a passive direct methanol fuel cell (DMFC) was investigated experimentally. The results show that when the passive DMFC operated with a lower methanol concentration (2.0 M), a thicker membrane led to better performance at lower current densities, but exhibited lower performance at higher current densities. When the methanol concentration was increased to 4.0 M, however, the three membranes exhibited similar cell voltages over a wide range of current densities. In contrast, this work also shows the polarization behaviors in an active DMFC when the three membranes were substantially different. Finally, the test of fuel utilization indicates that the passive DMFC with a thicker membrane exhibited higher efficiency.  相似文献   

20.
An air-breathing direct methanol fuel cell (DMFC) is attractive for portable-power applications. There are, however, several barriers that must be overcome before DMFCs reach commercially viability. This study shows that the cell power density is strongly affected by the fabrication conditions of the membrane electrode assembly (MEA) and by the technique used for assembly of the cell components. The results indicate that reducing the pressure and the thickness of catalyst layer in the MEA fabrication process can significantly improve power density. The production of water at the cathode, especially at a high power density, is shown to have a strong impact on the operation of an air-breathing DMFC since water blocks the feeding of air to the cathode. The power density (≧20 mW cm−2) of an air-breathing DMFC is found to drop to nearly half of its initial value after 30–40 min of operation in a short-term stability test. This appears to be one of the major limitations for potable electronic applications. Despite the many practical difficulties associated with an air-breathing DMFC, an attempt is also made to highlight the importance of the component assembly technique using a small cell pack with four integrated unit cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号