首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of power sources》2005,144(1):197-203
Anodes derived from oxides of tin have, of late, been of considerable interest because, in principle, they can store over twice as much lithium as graphite. A nanometric matrix of Li2O generated in situ by the electrochemical reduction of SnO2 can provide a facile environment for the reversible alloying of lithium with tin to a maximum stoichiometry of Li4.4Sn. However, the generation of the matrix leads to a high first-cycle irreversible capacity. With a view to increasing the reversible capacity as well as to reduce the irreversible capacity and capacity fade upon cycling, tin–tin oxide mixtures were investigated. SnO2, synthesized by a chemical precipitation method, was mixed with tin powder at two compositions, viz., 1:2 and 2:1, ball-milled and subjected to cycling studies. A mixture of composition Sn:SnO2 = 1:2 exhibited a specific capacity of 549 mAh g−1 (13% higher than that for SnO2) with an irreversible capacity, which was 7% lower than that for SnO2 and a capacity fade of 1.4 mAh g−1 cycle−1. Electrodes with this composition also exhibited a coulombic efficiency of 99% in the 40 cycles. It appears that a matrix in which tin can be distributed without aggregation is essential for realizing tin oxide anodes with high cyclability.  相似文献   

2.
《Journal of power sources》2003,114(1):113-120
Tin oxides and nickel oxide thin film anodes have been fabricated for the first time by vacuum thermal evaporation of metallic tin or nickel, and subsequent thermal oxidation in air or oxygen ambient. X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements showed that the prepared films are of nanocrystalline structure with the average particle size <100 nm. The electrochemical properties of these film electrodes were examined by galvanostatic cycling measurements and cyclic voltammetry. The composition and electrochemical properties of SnOx (1<x<2) films strongly depend on the oxidation temperature. The reversible capacities of SnO and SnO2 films electrodes reached 825 and 760 mAh g−1, respectively, at the current density of 10 μA cm−2 between 0.10 and 1.30 V. The SnOx film fabricated at an oxidation temperature of 600 °C exhibited better electrochemical performance than SnO or SnO2 film electrode. Nanocrystalline NiO thin film prepared at a temperature of 600 °C can deliver a reversible capacity of 680 mAh g−1 at 10 μA cm−2 in the voltage range 0.01–3.0 V and good cyclability up to 100 cycles.  相似文献   

3.
《Journal of power sources》2001,96(2):277-281
A SnO2-carbon composite prepared by heat treating a mixture of colloidal SnO2 and sucrose demonstrated a reversible lithium storage capacity of 680 mA h/g on the 1st cycle. The discharge curve of the composite did not exhibit the 1.0 V plateau characteristic of SnO2. The high reversible capacity of the composite suggests that lithium is stored in both tin and carbon. The composite demonstrated reduced capacity fade over SnO2 as well as SnO:graphite and Sn:graphite composites.  相似文献   

4.
Nano-SnO2/carbon composite materials were synthesized in situ using the polyol method by oxidizing SnCl2·2H2O in the presence of a carbon matrix. All the as-synthesized composites consisted of SnO2 nanoparticles (5–10 nm) uniformly embedded into the carbon matrix as evidenced by TEM. XRD confirmed the presence of nano-sized SnO2 particles that are crystallized in a rutile structure and XPS revealed a tin oxidation state of +4. Cyclic voltammetry of the composites showed an irreversible peak at 1.4 V in the first cycle and a typical alloying/de-alloying process at 0.1–0.5 V. The best composite (“composite I”, 15 wt% SnO2) showed an improved lithium storage capacity of 370 mAh g?1 at 200 mA g?1 (~C/2) which correspond to 32% improvement and lower capacity fade compared to commercial SnO2 (50 nm). We have also investigated the effect of the heating method and we found that the use of a microwave was beneficial in not only shortening reaction time but also in producing smaller SnO2 particles that are also better dispersed within the carbon matrix which also resulted in higher lithium storage capacity.  相似文献   

5.
A.A. Dakhel 《Solar Energy》2012,86(1):126-131
A comprehensive structural, optical, electrical, and optoelectronic study of arsenic-doped SnO2 was conducted. Several arsenic-doped SnO2 thin films with different arsenic content have been prepared on glass and silicon substrates by a vacuum thermal evaporation technique. The structural, electrical and optical study show that some of As5+ ions occupied locations in interstitial positions of SnO2 lattice. The prepared oxidized pure tin film is found to be consisting of orthorhombic and tetragonal SnO2 structure. The optical properties show that arsenic-doped SnO2 films are good transparent oxides. The bandgap of arsenic-doped SnO2 varies with arsenic content following the Moss–Burstein rule. The electrical behaviors show that the prepared arsenic-doped SnO2 films are degenerate semiconductors and might transform into insulators with increasing arsenic doping level. The electrical properties (resistivity, mobility, and carrier concentration) vary depending on the arsenic doping level. The SnO2 film doped with wt. 0.6% arsenic shows utmost dc electrical conductivity parameters: resistivity of 4.6 × 10?2 Ω cm, mobility of 6.0 cm2/V s, and carrier concentration of 2.25 × 1019 cm?3. From transparent-conducting-oxide (TCO) point of view, low arsenic concentration (less that 1%) is effective for SnO2 donor doping but not emulate doping with other dopant like Sb.  相似文献   

6.
《Journal of power sources》2006,160(1):638-644
Carbon-coated Sn powders were prepared from the powder mixtures of thermoplastic precursor PVA, SnO2 and MgO. The characterization of composite powders synthesized was carried out by XRD, TG, TEM, SEM and anodic performance measurement. SnO2 was reduced to metallic Sn by heating with PVA, and its particle size in carbon shell was around 30–100 nm. MgO existence hindered the agglomeration of molten metallic Sn and made the dispersion of metallic Sn as fine particles possible. They showed high anodic performance in lithium ion batteries; high charge capacity as 500 mAh g−1 even after tenth cycle and stable cyclic performance. The spaces left in carbon shell by MgO after its dissolution were supposed to absorb a large volume expansion of Sn metal particle by Li alloying during discharging. When carbon-coated Sn loaded onto graphite flakes, metallic tin contributed to the increase in capacity.  相似文献   

7.
《Journal of power sources》2004,128(2):135-144
The preparation and subsequent oxidation of nickel cathodes modified by impregnation with zinc oxide (ZnO) were evaluated by surface and bulk analysis. The electrochemical behaviors of ZnO impregnated NiO cathodes was also evaluated in a molten 62 mol% Li2CO3 + 38 mol% K2CO3 eutectic at 650 °C by electrochemical impedance spectroscopy (EIS) as a function of ZnO content and immersion time. The ZnO impregnated nickel cathodes showed the similar porosity, pore size distribution and morphology to the reference nickel cathode. The stability tests of ZnO impregnated NiO cathodes showed that the ZnO additive could dramatically reduce the solubility of NiO in a eutectic carbonate mixture under the standard cathode gas condition. The impedance spectra for cathode materials show important variations during the 100 h of immersion. The incorporation of lithium in its structure and the low dissolution of nickel oxide and zinc oxide are responsible of these changes. After that, the structure reaches a stable state. The cathode material having 2 mol% of ZnO showed a very low dissolution and a good catalytic efficiency close to the NiO value. We thought that 2 mol% ZnO/NiO materials would be able to adapt as alternative cathode materials for MCFCs.  相似文献   

8.
《Journal of power sources》2006,163(1):229-233
Solid polymer electrolytes composed of poly(ethylene oxide)(PEO), poly(oligo[oxyethylene]oxyterephthaloyl) and lithium perchlorate have been prepared and characterized. Addition of poly(oligo[oxyethylene]oxyterephthaloyl) to PEO/LiClO4 reduced the degree of crystallinity and improved the ambient temperature ionic conductivity. The blend polymer electrolyte containing 40 wt.% of poly(oligo[oxyethylene]oxyterephthaloyl) showed an ionic conductivity of 2.0 × 10−5 S cm−1 at room temperature and a sufficient electrochemical stability to allow application in the lithium batteries. By using the blend polymer electrolytes, the lithium metal polymer cells composed of lithium anode and LiCoO2 cathode were assembled and their cycling performances were evaluated at 40 °C.  相似文献   

9.
A spherical carbon material of meso-carbon microbead (MCMB) was examined as an anode in a polyethylene oxide (PEO) based polymer electrolyte lithium battery. The electrochemical performance of the carbon electrode with the polymer electrolyte depended on the electrode thickness and the particle size of MCMB. The 30 μm-thick electrode of MCMB with the particle size of 20–30 μm showed a reversible capacity comparable with that in a liquid electrolyte, but the 100 μm-thick electrode showed a half of the 30 μm-thick electrode. The smaller particle size of 5–8 μm exhibited a high irreversible capacity at the first charge–discharge cycle. The reaction heat between MCMB and the polymer electrolyte was 0.5 J mAh?1, which was much lower compared to those between lithium metal and the polymer electrolyte, 1.2 J mAh?1, and MCMB and conventional liquid electrolyte, 4.3 J mAh?1.  相似文献   

10.
A reactive powder of La0.84Sr0.16MnO3 is synthesized as a cathode material for solid oxide fuel cells by a citrate–nitrate auto-ignition process and characterized by thermal analysis, X-ray diffraction and electrical conductivity measurements. The effect of starting metal ion concentration in the precursor solution on the properties of the final oxide is studied and correlated through particle size analyses, sintering studies and microstructural examination. Sintered La0.84Sr0.16MnO3 ceramics of relative density around 93% can be fabricated by preferably keeping the metal ion concentration in the precursor to less than 0.8 M, whereas to make porous ceramics (relative densities of 75–80%) a higher metal ion concentration is preferred. At 1000 °C, the 93% dense ceramics exhibit electrical conductivities of around 168–169 S cm−1 and the porous ceramics of around 136–146 S cm−1.  相似文献   

11.
This paper experimentally investigates the sintered porous heat sink for the cooling of the high-powered compact microprocessors for server applications. Heat sink cold plate consisted of rectangular channel with sintered porous copper insert of 40% porosity and 1.44 × 10?11 m2 permeability. Forced convection heat transfer and pressure drop through the porous structure were studied at Re ? 408 with water as the coolant medium. In the study, heat fluxes of up to 2.9 MW/m2 were successfully removed at the source with the coolant pressure drop of 34 kPa across the porous sample while maintaining the heater junction temperature below the permissible limit of 100 ± 5 °C for chipsets. The minimum value of 0.48 °C/W for cold plate thermal resistance (Rcp) was achieved at maximum flow rate of 4.2 cm3/s in the experiment. For the designed heat sink, different components of the cold plate thermal resistance (Rcp) from the thermal footprint of source to the coolant were identified and it was found that contact resistance at the interface of source and cold plate makes up 44% of Rcp and proved to be the main component. Convection resistance from heated channel wall with porous insert to coolant accounts for 37% of the Rcp. With forced convection of water at Re = 408 through porous copper media, maximum values of 20 kW/m2 K for heat transfer coefficient and 126 for Nusselt number were recorded. The measured effective thermal conductivity of the water saturated porous copper was as high as 32 W/m K that supported the superior heat augmentation characteristics of the copper–water based sintered porous heat sink. The present investigation helps to classify the sintered porous heat sink as a potential thermal management device for high-end microprocessors.  相似文献   

12.
《Journal of power sources》2002,109(2):418-421
The performance of both blank and RuO2-impregnated SnO2 (Sb-6 mol%) xerogel electrodes are enhanced significantly by improved crystallinity via a novel crystallization process, which effectively suppresses grain coarsening and hence allows the xerogel to be crystallized at high temperatures while maintaining a high surface area. The improved SnO2 electrodes show maximum specific capacitances which exceed 10 F g−1 in 1 M KOHaq at 200 mV s−1 after firing at 800 °C. The enhancement becomes increasingly pronounced with increasing charge–discharge rate due to improved oxide conductivity.  相似文献   

13.
《Journal of power sources》2001,92(1-2):95-101
Lithium cobalt oxide powders have been successfully prepared by a molten-salt synthesis (MSS) method using a eutectic mixture of LiCl and Li2CO3 salts. The physico-chemical properties of the lithium cobalt oxide powders are investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), particle-size analysis and charge–discharge cycling. A lower temperature and a shorter time (∼700°C and 1 h) in the Li:Co=7 system are sufficient to prepare single-phase HT-LiCoO2 powders by the MSS method, compared with the solid-state reaction method. Charge–discharge tests show that the lithium cobalt oxide prepared at 800°C has an initial discharge capacity as high as 140 mA h g−1, and 100 mA h g−1 after 40 cycles. The dependence of the synthetic conditions of HT-LiCoO2 on the reaction temperature, time and amount of flux with respect to starting oxides is extensively investigated.  相似文献   

14.
《Journal of power sources》2002,109(2):333-339
Spinel lithium manganese oxide LiMn2O4 and its substituted forms LiM1/6Mn11/6O4 (M=Co, Al and Ni) were prepared by ultrasonic spray pyrolysis method. As-prepared particles showed a spherical morphology and a densely congested interior structure. The geometric mean diameter was between 0.76 and 0.93 μm, and the geometric standard deviation was approximately 1.33. The crystallite size was approximately 30 nm, and the specific surface area of the particles ranges from 5.7 to 12.7 m2/g. As-prepared particles were used as cathode active materials for lithium secondary battery and their charge/discharge properties have been investigated. As a result, it could be seen that ultrasonic spray pyrolysis is an effective method to prepare lithium manganese oxide (LiMn2O4) and its substituted forms within very short production time, which is only 4.8 min in the present work.  相似文献   

15.
《Journal of power sources》2006,162(2):1304-1311
To enhance the performance (i.e., mechanical properties and ionic conductivity) of pore-filling polymer electrolytes, titanium dioxide (TiO2) nanoparticles are added to both a porous membrane and its included viscous electrolyte, poly(ethylene oxide-co-ethylene carbonate) copolymer (P(EO-EC)). A porous membrane with 10 wt.% TiO2 shows better performance (e.g., homogeneous distribution, high uptake, and good mechanical properties) than the others studied and is therefore chosen as the matrix to prepare polymer electrolytes. A maximum conductivity of 5.1 × 10−5 S cm−1 at 25 °C is obtained for a polymer electrolyte containing 1.5 wt.% TiO2 in a viscous electrolyte, compared with 3.2 × 10−5 S cm−1 for a polymer electrolyte without TiO2. The glass transition temperature, Tg is lowered by the addition of TiO2 (up to 1.5 wt.% in a viscous electrolyte) due to interaction between P(EO-EC) and TiO2, which weakens the interaction between oxide groups of the P(EO-EC) and lithium cations. The overall results indicate that the sample prepared with 10 wt.% TiO2 for a porous membrane and 1.5 wt.% TiO2 for a viscous electrolyte is a promising polymer electrolyte for rechargeable lithium batteries.  相似文献   

16.
《Journal of power sources》2004,133(2):268-271
Following the route of synthesis of β-MoO3 through soft chemistry methods a new amorphous material with composition MoO3·2H2O has been detected. The hydrated molybdenum oxide showed the capacity for electrochemical lithium insertion. The maximum amount of lithium incorporated in this material (∼3.3 Li/Mo) leads to a specific capacity of 490 Ah kg−1. The charge–discharge curve showed a good reversibility in the potential range from 3.2 to 1.1 V versus Li+/Li0 where the cell voltage decreased monotonously as a function of the degree of lithium inserted. The electrochemical features of amorphous MoO3·2H2O suggest that it can be considered as a possible cathode candidate in rechargeable lithium batteries.  相似文献   

17.
《Journal of power sources》2006,159(1):307-311
Small crystallites LiFePO4 powder with conducting carbon coating can be synthesized by ultrasonic spray pyrolysis. Cheaper trivalent iron ion is used as the precursor. The pure olivine phase can be prepared with the duplex process of spray pyrolysis (synthesized at 450, 550 or 650 °C) and subsequent heat-treatment (at 650 °C for 4 h). The results indicate that the pyrolysis temperature of 450 °C is appropriate for best results. The carbon coating on the LiFePO4 surface is critical to the electrochemical performance of LiFePO4 cathode materials of the lithium secondary battery, since the carbon coating does not only increase the electronic conductivity via carbon on the surface of particles, but also enhance the ion mobility of lithium ion due to prohibiting the grain growth during post-heat-treatment. The carbon of 15 wt.% evenly distributed on the final LiFePO4 powders can get the highest initial discharge capacity of 150 mA h g−1 at C/10 and 50 °C.  相似文献   

18.
《Journal of power sources》2006,163(1):278-283
Spinel LiMn2O4 as a cathode material for lithium rechargeable batteries is prepared at the low temperature of 250 °C without any artificial mixing procedures of reactants. The phase transitions of lithium manganese oxide are found three times on heating at 250 °C. The prepared material exhibits the initial discharge capacity of 85.5 mAh g−1 and the discharge capacity retention of 91.5% after 50 cycles.  相似文献   

19.
《Journal of power sources》2001,94(2):201-205
The interface resistance between a lithium metal electrode and a polymer electrolyte has been measured for composite polymer electrolytes using various ceramic fillers with poly(ethylene oxide) (PEO) and lithium salts (LiX). The interface resistance depended on the properties of added fillers and lithium salts. The PEO with LiClO4 electrolyte contacted with lithium metal showed the high interfacial resistance of 1000 Ω cm2 at 70°C for 25 days. In contrast, the interface resistance between lithium metal and PEO with Li(CF3SO2)2N was as low as 67 Ω cm2 after contacting at 80°C for 30 days. The interface stability and the lithium ion conductivity were improved by addition of a small amount of ferroelectric BaTiO3 as the filler into the PEO–LiX electrolyte.  相似文献   

20.
The influence of the rare earth metal, samarium, as an alloying additive on the electrochemical behaviour of pure lead is studied by means of X-ray diffraction, self-depassivation, linear sweep voltammetry and a.c. impedance spectroscopy in 4.87 M H2SO4 at 25 °C. Studies on Pb–Sm alloys (Sm = 0.02, 0.04, and 0.12 wt.%) indicate that the oxide film formed on the alloy surface at 0.9 V is thicker than that on pure lead when the alloy contained less than 0.1 wt.% Sm. In addition, samarium exercises little influence on the conversion of PbSO4 to PbO2 in the oxide film during charging. The electrochemical impedance of the oxide film is much larger than that of the oxide formed on pure lead. With the addition of more than 0.1% Sm, however, the oxide film on the alloy surface is thinner and samarium obviously promotes the conversion of passive PbSO4 in oxide film to conductive PbO2. The a.c. impedance data show that a high content of samarium greatly inhibits the growth of the passivation layer and decreases the electrochemical impedance of the film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号