首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A modified mass-loss measurement technique is employed, for the first time, for the direct, in-situ determination of the metal vacancy formation in (Hg0.8Zn0.2)1-yTey,(s). The metal vacancy concentrations are determined between 350 and 650° C for four different compositions(y) within the homogeneity region and range from 1.7 to 6.6 × 1019 cm-3. The enthalpy of formation of a singly-ionized metal vacancy is derived to be between 0.32 and 0.72 eV depending upon the deviation from stoichiometry (compositiony). Com-pared to the recent data on HgTe(s), these experimental results show a slight but sig-nificant increase in the enthalpy of vacancy formation from HgTe to Hg0.8Zn0.2Te. These data provide the first, direct experimental evidence, in terms of vacancy formation en-ergy, supporting theoretical predictions of the bond strengthening effect of Zn for the latter alloy system. Based on the simultaneously determined equilibrium Hg partial pressures within the homogeneity range, the vacancy concentration-partial pressure iso-therms are constructed. The Hg partial pressures are also measured along the three-phase boundaries of the solid solutions, and these are in close agreement with published data obtained by optical absorption measurements. A considerable part of the P-T phase diagram is, thus, established in this work.  相似文献   

2.
The growth of epitaxial layers of mercury-cadmium-telluride (Hg1-xCdxTe) with relatively low x (0.2-0.3) from Te-rich solutions in an open tube sliding system is studied. The development of a semiclosed slider system with unique features permits the growth of low x material at atmospheric pressure. The quality of the films is improved by the use of Cd1-yZyTe and Hg1-xCdxTe substrates instead of CdTe. The substrate effects and the growth procedure are discussed and a solidus line at a relatively low temperature is reported. The asgrown epitaxial layers are p-type with hole concentration of the order of 1·1017 cm−3, hole mobility of about 300 cm2·V−1 sec−1 and excess minority carrier life-time of 3 nsec, at 77 K.  相似文献   

3.
Cd1−xZnxTe compounds of different compositions have been prepared at temperatures ranging from 400 to 1000°C by annealing elemental Te in sealed quartz ampoules, in an atmosphere comprising vapors of Cd and Zn whose partial pressures were varied by varying the composition of the binary Cd1−yZny alloys which provided the Cd and Zn vapors in these annealing experiments. The chemical compositions of the resulting Cd1−xZnxTe compounds have been analyzed using electron probe microanalytical techniques. Results indicate that presence of a 0.5%Zn along with Cd in a closed or semi-closed system may prove to be beneficial in preventing decomposition and/or formation of a metal/non metal phase during annealing of Cd0.96Zn0.04 Te substrates. Using the thermodynamic data in the literature for the binary Cd1−yZny alloys and with the assumption that the activities of the Cd and Zn components are weakly dependent on temperature, the partial pressures of Cd and Zn in equilibrium with the Cd1−xZnxTe compounds at various temperatures have been evaluated.  相似文献   

4.
The dynamic mass-loss technique has been employed to measure Hg partial pressures over Te-saturated Hg1-xCdxTe solid solutions with x = 0.40, 0.54, and 0.70 in the 10-1 to 10-4 atm range. The relative chemical potentials of HgTe in Hg1-xCdxTe solid solutions have been calculated using the measured Hg partial pressures at temperatures below 413°C, and fitted into an analytical expression. A Gibbs-Duhem integration yielded the relative chemical potentials of CdTe. By combining the relative chemical potentials of the binary components HgTe and CdTe, an expression for the Gibbs free energy of mixing was derived. The binodal (miscibility gap) and spinodal curves of the Hg1-xCdxTe solid solutions have been established with the critical temperature and composition of 221°C and Hg0.40Cd0.60Te.  相似文献   

5.
Measurements have been performed of the carrier concentrations in vacancy-doped Hg1−xCdxTe with x=0.22, 0.29, 0.45, and 0.5. Anneals to establish the carrier concentrations were performed on both the mercury- and tellurium-rich sides of the phase field. When these results were added to earlier data for x=0.2 and 0.4, and assuming that all vacancies are doubly ionized, then vacancy concentrations for all values of x and anneal temperature can be represented by simple equations. On the mercury side of the phase field, the vacancy concentrations varied as 2.50×1023(1−x) exp[−1.00/kT] for low concentrations, and as 3.97×107(1−x)1/3n i 2/3 exp[−0.33/kT] for high concentrations, where ni is the intrinsic carrier concentration. On the tellurium rich side, the vacancy concentrations varied as 2.81 × 1022(1−x) exp[−0.65/kT] for low concentrations and as 1.92×107(1−x)1/3n i 2/3 exp[−0.22/kT] for high concentrations.  相似文献   

6.
Acceptor doping of many II–VI compound semiconductors has proved problematic and doping of epitaxial mercury cadmium telluride (MCT, Hg1−x Cd x Te) with arsenic is no exception. High-temperature (>400°C) anneals followed by a lower temperature mercury-rich vacancy-filling anneal are frequently required to activate the dopant. The model frequently used to explain p-type doping with arsenic invokes an amphoteric nature of group V atoms in the II–VI lattice. This requires that group VI substitution with arsenic only occurs under mercury-rich conditions either during growth or the subsequent annealing and involves site switching of the As. However, there are inconsistencies in the amphoteric model and unexplained experimental observations, including arsenic which is 100% active as grown by metalorganic vapor-phase epitaxy (MOVPE). A new model, based on hydrogen passivation of the arsenic, is therefore proposed.  相似文献   

7.
Low-temperature annealing of (Hg,Cd)Te   总被引:1,自引:0,他引:1  
Many methods for the employment of (Hg,Cd)Te alloys employ anneals at temperatures <300°C to convert the p type left over from the growth process or to adjust the concentration of the native acceptors. An investigation of the kinetics of this annealing process has been performed as functions of (1) vacancy concentration; (2) composition, or the CdTe mole fraction in the alloy; and (3) temperature. If these anneals are carried out under mercury-saturated conditions, the tellurium precipitates in the material, which result either from the growth process or from specific thermal histories, are annihilated by in-diffusing mercury, which results in a significant multiplication of dislocations. This interface, delineated by defect etching, has been employed to investigate the kinetics of the annealing process. These results will be unaffected by the uncertainties introduced in determining this interface by electrical measurements, which arise from incomplete ionizations of the metal vacancies at 77 K for Hg1−xCdxTe with CdTe mole fractions exceeding ∼0.26. The annealing rate appears to be strongly dependent on both the temperature and composition of the alloy, decreasing with increasing CdTe mole fraction, within 0.15 and 0.5, with the behavior resembling a composition-dependent, activated-diffusion process. The depth of the interface appears to vary inversely as the root of the metal-vacancy concentration.  相似文献   

8.
The epitaxial layers of Hg1−xCdxTe (0.17≦×≦0.3) were grown by liquid phase epitaxy on CdTe (111)A substrates using a conventional slider boat in the open tube H2 flow system. The as-grown layers have hole concentrations in the 1017− 1018 cm−3 range and Hall mobilities in the 100−500 cm2/Vs range for the x=0.2 layers. The surfaces of the layers are mirror-like and EMPA data of the layers show sharp compositional transition at the interface between the epitaxial layer and the substrate. The effects of annealing in Hg over-pressure on the properties of the as-grown layers were also investigated in the temperature range of 250−400 °C. By annealing at the temperature of 400 °C, a compositional change near the interface is observed. Contrary to this, without apparent compositional change, well-behaved n-type layers are obtained by annealing in the 250−300 °C temperature range. Sequential growth of double heterostructure, Hgl−xCdxTe/Hgl−yCdyTe on a CdTe (111)A substrate was also demonstrated.  相似文献   

9.
A radiotracer technique has been used to measure both mercury self-diffusion and surface concentration values in bulk and liquid phase epitaxy, LPE, grown Hg1−xCdxTe. A high resolution sectioning technique has allowed profiling of thin epitaxial layers in submicron steps. Hg1-xCdxTe samples with composition values betweenx Cd= 0.16 and 0.23 were isothermally annealed in carefully controlled and monitored diffusion con-ditions. Mercury reservoirs containing Hg203 were used to provide vapour diffusion sources during closed tube isothermal anneals in the temperature range 300° C to 400° C. Evidence has been found which may indicate the presence of two components in the radio-tracer profiles for both bulk and epitaxially grown material. In some cases it was possible to estimate two diffusion coefficients,D 1andD 2, from the near surface and deeply penetrating components, respectively. Our results forD 1andD 2are compared with other work. For bulk material annealed at 400° C under a saturated mercury pressureD 1= 2.0 x 10-12cm2s-1 andD 2= 1.1 x 10-11cm2s−1. Diffusion coefficients at 310° C under saturated mercury pressure, have been measured in bulk and epitaxial material. Close agreement was found between these results with an average value ofD 1= 1.4 x 10−13cm2s−1. We believe this to be the first time radiotracer results for epitaxial material have been presented. We have collated diffusion data, as a function of reciprocal temperature, from several workers and suggest there is evidence for a change in the activation energy for mercury diffusion around 350° C. This may be due to a change in the dominant diffusion mechanism.  相似文献   

10.
Cation impurity gettering in Hg1−xCdxTe is described in the context of process models which include the interactions of the impurities and the dominant native point defects. Experimental results are presented using secondary ion mass spectroscopy (SIMS) profiles of Au redistribution in Hg1−xCdxTe (x = 0.2,0.3,0.4) following Hg anneals and ion mills, which are processes known to inject excess Hg interstitials. In either process, the IB impurity distributes preferentially to high vacancy regions. The junction depth of the low to high impurity transition is determined by SIMS. For Hg-rich anneals of Au-doped high vacancy concentration material, the impurity junction behavior with respect to anneal time and temperature is compared to that expected for type converted electrical junctions in vacancy-only material. For milled Au-doped Hg0.7Cd0.3Te with a high vacancy concentration, the impurity junction depths are approximately proportional to the amount of material removed, as was the case with x = 0.2 material. Hg anneal type-conversion rates are found to have a strong compositional dependence which compares favorably with the strong self-diffusion coefficient dependence on x-value. In contrast, the mill conversion rate has a weak x-value dependence. Effects of trace vs dominant Au levels compared to the background vacancy concentration are quantified. True decoration of intrinsic defect processes requires Au <<[Cation Vacancies].  相似文献   

11.
We have used a nuclear hyperfine technique, perturbed γγ angular correlation (PAC), to study the interactions between111In and native defects and impurities in Hg1−xCdxTe. The PAC technique uses the quadrupole interaction of111In with local electric field gradients to characterize the local environment of this donor dopant. We observed that when In was diffused into a bulk or thin film sample of Hg1−xCdxTe (x=0.21 and x=0.3) at 350°C and the sample was slow cooled, the In occupied sites with near-cubic symmetry, presumably the substitutional metal site. However, when the sample was quenched, a fraction of the In was incorporated into defects characterized by quadrupole interaction strengthsv Q1 andv Q2 and asymmetries of ν12=0.08. These defects are attributed to the trapping of a metal vacancy at a next-nearest neighbor site to the In atom. The introduction of hydrogen by boiling the samples in distilled water for >4h eliminated the previously observed PAC signals and created defects characterized byv Q3=35 MHz, ν3 <0.1 andv Q4=MHz, ν4 <0.1. These defects are attributed to the decoration of the In-VHg complex by a hydrogen atom. Hall effect measurements showed that hydrogenation increased the hole concentration in p-type quenched samples and even converted n-type indium-doped samples to p-type. A possible model for hydrogen incorporation which includes self-compensation by vacancy creation is suggested.  相似文献   

12.
A novel set-up for horizontal open-tube vapor transport epitaxy of Hg1−xCdxTe films is described. Mirror-like Hg1−xCdxTe epitaxial layers with thicknesses up to 40 Μm were grown and characterized. The growth temperature ranged from 380 to 550‡C, with growth rates of the order of 0.5–7 Μm per hour. The concentration depth profiles and the optical and electrical properties of relatively uniform films with x≈0.3–0.4 are reported. The process kinetics are studied. A simple model which takes into account the reactions occurring at the boundaries of the epitaxial layer and the interdiffusion in the epilayer is presented and discussed. The model fits the experimentally observed characteristics of the epitaxial growth process. A constant growth rate leading to a linear dependence of film thickness upon deposition time y–yi=ks t is derived. The reaction rate constant k is given by ks=koe−Ea/kT with ko=0.18 cm-sec−1and the energy of activation Ea=1.12 eV.  相似文献   

13.
We zone-engineered HgCdTe/HgTe/HgCdTe quantum wells (QWs) using the molecular-beam epitaxy (MBE) method with in situ high-precision ellipsometric control of composition and thickness. The variations of ellipsometric parameters in the ψ–Δ plane were represented by smooth broken curves during HgTe QW growth with abrupt composition changes. The form of the spiral fragments and their extensions from fracture to fracture revealed the growing layer composition and its thickness. Single and multiple (up to 30) Cd x Hg1−x Te/HgTe/Cd x Hg1−x Te QWs with abrupt changes of composition were grown reproducibly on (013) GaAs substrates. HgTe thickness was in the range of 16 nm to 22 nm, with the central portion of Cd x Hg1−x Te spacers doped by In to a concentration of 1014 cm−3 to 1017 cm−3. Based on this research, high-quality (013)-grown HgTe QW structures can be used for all-electric detection of radiation ellipticity in a wide spectral range, from far-infrared (terahertz radiation) to mid-infrared wavelengths. Detection was demonstrated for various low-power continuous-wave (CW) lasers and high-power THz pulsed laser systems.  相似文献   

14.
The results of an experimental study of samples of MnxHg1−x Te films grown by liquid-phase epitaxy on a Cd0.96Zn0.04Te substrate are presented. It shows that, as a result of the diffusion of cadmium from the substrate, a CdxMnyHg1−xy Te film with a variable band-gap layer is formed close to the 〈epitaxial-film〉-substrate interface. The appearance of this variable band gap is revealed by the transport phenomena. The temperature dependence of the band gap E g (T) is determined in a linear approximation on T from the results of a theoretical analysis of the temperature dependences of the free-carrier concentration and mobility. It is shown that averaging the semiempirical dependences for the ternary compounds with the extreme compositions, using the virtual-crystal approximation, can produce large errors when determining E g (T) in a specific semiconductor. Fiz. Tekh. Poluprovodn. 31, 268–272 (March 1997)  相似文献   

15.
The requirement for two color Sprite detectors, with elements sensitive in the ranges 3-5 μn (MW) and 8-14 μn (LW) at 77K, is met using Hg1−xCdxTe elements of composition x = 0.3 and x = 0.2, respectively. The need for low defect levels for increased performance indicates the use of liquid phase epitaxy (LPE). While LW material is fairly well characterized, the growth and conversion to n-type of MW LPE has proved more difficult. Reported work shows limited data and limited success in converting MW LPE to n-type, and this primarily in donor-doped material. This paper describes the growth, annealing to n-type and characterization of Hg0.7Cd0.3Te. High n-type conversion yields were obtained, with low donor levels (mid-1013 to mid-1014 cm−3), high mobility (>104 cm2 (Vs)−1) and long minority carrier lifetime (>10 us).  相似文献   

16.
Mercury radiotracer diffusion results are presented, in the range 254 to 452°C, for bulk and epitaxial CdxHg1–xTe, and we believe this to be the first report for metalorganic vapor phase epitaxy (MOVPE) grown CdxHg1–xTe. For all growth types studied, with compositions of xCd=0.2±0.04, the variation of the lattice diffusion coefficient, DHg, with temperature, under saturated mercury partial pressure, obeyed the equation: DHg=3×10−3 exp(−1.2 eV/kT) cm2 s−1. It was found to have a strong composition dependence but was insensitive to changes of substrate material or crystal orientation. Autoradiography was used to show that mercury also exploited defect structure to diffuse rapidly from the surface. Dislocation diffusion analysis is used to model defect tails in MOVPE CdxHg1–xTe profiles.  相似文献   

17.
Time relaxation of the electrical conductivity σ(77 K) and Hall coefficient RH(77 K) of the n-type layer created by ion milling is investigated in Hg vacancy-doped, As-doped, and In-predoped p-type, and In-doped n-type Hg1−xCdxTe (0.2 < x < 0.22) samples. We show that the n-type layer is formed, and the temperature-activated relaxation occurs in all cases. The annealing at 75°C results in a gradual degradation of the converted n-type layer and a back n-to-p conversion within 8 days. The existence of a high-conducting, surface-damaged region with a high-electron density (∼1018 cm−3) and a low mobility (∼103 cm2/Vs) is confirmed, and its influence on the relaxation is studied.  相似文献   

18.
N-type Hg1−xCdxTe layers with x values of 0.3 and 0.7 have been grown by molecular beam epitaxy using iodine in the form of CdI2 as a dopant. Carrier concentrations up to 1.1 × 1018 cm−3 have been achieved for x = 0.7 and up to 7.6 × 1017 cm−3 for x=0.3. The best low temperature mobilities are 460 cm2/(Vs) and 1.2 × 105 cm2/(Vs) for x=0.7 and x=0.3, respectively. Using CdI2 as the dopant modulation doped HgTe quantum well structures have been grown. These structures display very pronounced Shubnikov-de Haas oscillations and quantum Hall plateaus. Electron densities in the 2D electron gas in the HgTe quantum well could be varied from 1.9 × 1011 cm−2 up to 1.4 × 1012 cm−2 by adjusting the thicknesses of the spacer and doped layer. Typical mobilities of the 2D electron gas are of the order of 5.0 × 104 cm2/(Vs) with the highest value being 7.8 × 104 cm2/(Vs).  相似文献   

19.
Hg1−xCdxTe films were grown liquid phase epitaxially from tellurium rich solutions containing up to 10 at. % of the group V elements P, As, Sb, and Bi. Chemical analysis of the Te growth solutions and the films was carried out in conjunction with extensive Hall effect measurements on the films subsequent to various annealing treatments under Hg rich and Te rich conditions. Despite the presence of a large concentration of the group V elements in the Te source solution, the maximum concentration of these elements incorporated into the liquid phase epitaxially grown Hg1-xCdxTe appears to vary from <1015cm−3 for Bi up to 1017cm−3 for phosphorus and As implying a distribution coefficient varying from <10−5 for Bi up to 10−3 for P at growth temperature of ∼500° C. This low value of the distribution coefficient for group V elements for growths from Te rich solutions contrasts with the moderately high values reported in the literature to date for growth from Hg rich solutions as well as pseudobinary solutions (Bridgman growth). The widely differing distribution coefficients and hence the solubility of the group V elements for Hg rich and Te rich liquid phase epitaxial solutions is explained on the basis that the activity coefficient of the group V elements in Te rich solutions is probably orders of magnitude lower than it is in Hg rich solutions. Finally, the results of the anneals at 200° C under Hg saturated conditions with and without a 500° C Hg saturated preanneal have indicatedn top conversion in many of the films attesting to the amphoteric behavior of the group V elements in LPE grown Hg1−xCdxTe(s) similar to the previously reported behavior of P in bulk grown Hg0.8Cd0.2Te.  相似文献   

20.
Based on liquidus and solidus temperatures and associated confidence limits reported by Brice, Capper, and Jones [J. Cryst. Growth, 75, 395 (1986)], we develop polynomial approximations to the liquidus and solidus curves for the pseudobinary material Hg1−xCdxTe. These approximations are “thermodynamically consistent” in that they satisfy the requirement that the liquidus and solidus temperatures must agree at x=0 and 1. A linear programming approach is used to find the lowest-degree polynomial approximations to the liquidus and solidus temperatures falling within the confidence limits of Brice et al. at each of their 21 compositions, and also satisfying the convexity requirement imposed by Brice et al. on their own manually-drawn curves. Finally, we present a twoparameter rational approximation that fits the tabulated segregation coefficients for Hg1−xCdxTe better than an earlier five-parameter polynomial approximation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号