共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A new robust nonlinear controller is presented and applied to a planar 2-DOF parallel manipulator with redundant actuation. The robust nonlinear controller is designed by combining the nonlinear PD (NPD) control with the robust dynamics compensation. The NPD control is used to eliminate the trajectory disturbances, unmodeled dynamics and nonlinear friction, and the robust control is used to restrain the model uncertainties of the parallel manipulator. The proposed controller is proven to guarantee the uniform ultimate boundedness of the closed-loop system by the Lyapunov theory. The trajectory tracking experiment with the robust nonlinear controller is implemented on an actual planar 2-DOF parallel manipulator with redundant actuation. The experimental results are compared with the augmented PD (APD) controller, and the proposed controller shows much better trajectory tracking accuracy. 相似文献
3.
针对具有参数不确定性和未知外部干扰的机械手轨迹跟踪问题提出了一种多输入多输出自适应鲁棒预测控制方法. 首先根据机械手模型设计非线性鲁棒预测控制律, 并在控制律中引入监督控制项; 然后利用函数逼近的方法逼近控制律中因模型不确定性以及外部干扰引起的未知项. 理论证明了所设计的控制律能够使机械手无静差跟踪期望的关节角轨迹. 仿真验证了本文设计方法的有效性. 相似文献
4.
This paper considers adaptive control of parallel manipulators combined with fuzzy-neural network algorithms (FNNA).With this algorithm, the robustness is guaranteed by the adaptive control law and the parametric uncertainties are eliminated. FNNA is used to handle model uncertainties and external disturbances. In the proposed control scheme, we consider modifying the weight of fuzzy rules and present these rules to a MIMO system of parallel manipulators with more than three degrees-of-freedom (DoF). The algorithm has the advantage of not requiring the inverse of the Jacobian matrix especially for the low DoF parallel manipulators. The validity of the control scheme is shown through numerical simulations of a 6-RPS parallel manipulator with three DoF. 相似文献
5.
This paper considers adaptive control of parallel manipulators combined with fuzzy-neural network algorithms (FNNA). With this algorithm, the robustness is guaranteed by the adaptive control law and the parametric uncertainties are eliminated. FNNA is used to handle model uncertainties and external disturbances. In the proposed control scheme, we consider modifying the weight of fuzzy rules and present these rules to a MIMO system of parallel manipulators with more than three degrees-of-freedom (DoF). The algorithm has the advantage of not requiring the inverse of the Jacobian matrix especially for the low DoF parallel manipulators. The validity of the control scheme is shown through numerical simulations of a 6-RPS parallel manipulator with three DoF. 相似文献
6.
Model-based control improves robot performance provided that the dynamics parameters are estimated accurately. However, some of the model parameters change with time, e.g. friction parameters and unknown payload. Particularly, off-line identification approaches omit the payload estimation (due to practical reasons). Adaptive control copes with some of these structural uncertainties. Thus, this work implements an adaptive control scheme for a 3-DOF parallel manipulator. The controller relies on a novel relevant-parameter dynamic model that permits to study the cases in where the uncertainties affect: (1) rigid body parameters, (2) friction parameters, (3) actuator dynamics, and (4) a combination of the former cases. The simulations and experiments verify the performance of the proposed controller. The control scheme is implemented on the modular programming environment Open Robot Control Software (OROCOS). Finally, an experimental setup evaluates the controller performance when the robot handles a payload. 相似文献
7.
Pneumatic artificial muscle is widely used since it has the advantage including simple structure, lightweight, force controllable, compliance and so on. In this paper, a two-link anthropomorphic arm is constructed by pneumatic artificial muscles for the upper-limb rehabilitation training. In order to assist impaired upper-limb patients to achieve various training, the anthropomorphic arm should realize flexible human reaching movements. Due to frictions and model uncertainties of the anthropomorphic arm system, an adaptive fuzzy backstepping control is proposed to ensure the stability and the adaptivity during the motion. The control method is proved by Lyapunov asymptotic stability and is verified by numerical simulations. Furthermore, experiments are performed and results demonstrate that the proposed control method is efficient and robust. 相似文献
8.
We investigate motion synchronization of dual-cylinder pneumatic servo systems and develop an adaptive robust synchronization controller. The proposed controller incorporates the cross-coupling technology into the integrated direct/indirect adaptive robust control (DIARC) architecture by feeding back the coupled position errors, which are formed by the trajectory tracking errors of two cylinders and the synchronization error between them. The controller employs an online recursive least squares estimation algorithm to obtain accurate estimates of model parameters for reducing the extent of parametric uncertainties, and uses a robust control law to attenuate the effects of parameter estimation errors, unmodeled dynamics, and disturbances. Therefore, asymptotic convergence to zero of both trajectory tracking and synchronization errors can be guaranteed. Experimental results verify the effectiveness of the proposed controller. 相似文献
9.
针对空间机械臂在轨操控过程中,重力加速度不同于地面装调阶段的重力加速度,会随着空间位置的改变而变化的问题.本文提出了一种自适应鲁棒控制策略,用于空间机械臂的末端控制,从而使在地面重力条件下装调好的空间机械臂能够在空间微重力条件下实现在轨操控任务.通过分析重力项对空间机械臂轨迹跟踪控制的影响,设计自适应律在线估计重力加速度,从而得到重力项的估计,系统的不确定性通过鲁棒控制器来补偿.基于李雅普诺夫理论证明了闭环系统的稳定性.仿真结果表明,在地面装调阶段的重力环境下和空间应用阶段的微重力环境下,该控制器对空间机械臂的末端控制均能达到较高的轨迹跟踪精度,具有重要的工程应用价值. 相似文献
10.
The objective of the research project was to design and construct a 3DOF tripod-type electro-pneumatic parallel manipulator that could be used for pick-and-place tasks in municipal waste recycling facilities. The fundamental requirement was that the manipulator be simple and cheap to construct, operate and maintain as well as robust and resistant to damage. The forward and inverse kinematic problem as well as working space and strength analysis issues were used for construction of manipulator. The prototype was tested using different payloads and velocities to establish its positioning accuracy and repeatability. The robot behavior was controlled with a commercially available industrial controller, which was reported insufficient for point-to-point operations required during solid waste handling. Conclusions have been drawn on how to optimize the robot structure and control. 相似文献
11.
Pneumatic artificial muscle (PAM) has highly nonlinear and time-varying behavior due to gas compression and nonlinear elasticity of the bladder containers. Hence, it is difficult to achieve excellent tracking performance when using classical control methods. This study proposes a Takagi–Sugeno (T–S) fuzzy model-based control for improving control performance. The proposed approach decomposes the model of a nonlinear system into a set of linear subsystems. This allows, the T–S fuzzy model-based controller to use simple linear control techniques providing a systematic framework for the design of a state feedback controller. Stability analysis is carried out using Lyapunov direct method. The powerful LMI Toolbox in MATLAB is employed to solve linear matrix inequalities (LMIs) to obtain the controller gains. Experimental results verified that the proposed controller can achieve excellent tracking performance under different disturbances. 相似文献
12.
Kai Liu Jiaqi Xu Zhishang Ge Yangwei Wang Dongbiao Zhao Yonghua Lu 《Advanced Robotics》2017,31(10):531-543
This paper deals with an efficient implementation of robust controller on 3-DOF parallel robot driven by pneumatic muscle actuators (PMAs). PMA is a new flexible pneumatic actuator with relatively complex mathematical model. For the purpose of controlling robot, a new method to establish mathematical model of PMA is proposed. Based on analysis of stiffness characteristics of PMA, the concept of nominal stiffness coefficient is put forward and applied to establishment of mathematical model of PMA. According to 3-DOF robotic decoupling property, two rotational freedom of X, Y-axis are controlled by robust controller. Based on the dynamics, trajectory tracking control in simulation performs well under the circumstances of different interference via robust controller. Experimental results show that robust controller has satisfactory tracking performance and the characteristic of high real time. Its maximum tracking errors around X–Y axis are not more than 0.4°. Due to its less interference in motion around Z-axis, controlling Z-axis also has good tracking performance via computed torque method. 相似文献
13.
针对一类具有未知输入齿隙、参数不确定以及未建模动态和干扰的非线性系统,设计了自适应鲁棒控制器.将齿隙非线性模型等价表示为具有有界建模误差的全局线性化模型,在此基础上设计了包含自适应模型补偿、反馈稳定和鲁棒反馈3部分的自适应鲁棒控制器,并给出了系统动态跟踪误差和稳态误差指标.理论分析证明,闭环控制系统信号有界且跟踪误差在任意期望的精度范围内,仿真研究验证了所提出方法的有效性. 相似文献
14.
This paper deals with the dynamics and control of a novel 3-degrees-of-freedom (DOF) parallel manipulator with actuation redundancy. According to the kinematics of the redundant manipulator, the inverse dynamic equation is formulated in the task space by using the Lagrangian formalism, and the driving force is optimized by utilizing the minimal 2-norm method. Based on the dynamic model, a synchronized sliding mode control scheme based on contour error is proposed to implement accurate motion tracking control. Additionally, an adaptive method is introduced to approximate the lumped uncertainty of the system and provide a chattering-free control. The simulation results indicate the effectiveness of the proposed approaches and demonstrate the satisfactory tracking performance compared to the conventional controller in the presence of the parameter uncertainties and un-modelled dynamics for the motion control of manipulators. 相似文献
15.
16.
Ramhuzaini Abd. Rahman 《International journal of control》2017,90(2):249-274
Pneumatic artificial muscles (PAMs) are a class of pneumatic drives that have received considerable attention for applications related to bio-inspired robotics. Nevertheless, servo control of PAMs is challenging due to the compressibility and nonlinear flow characteristics of air, hysteresis behaviour as well as uncertainties present. In this paper, positioning of an antagonistically paired PAM with mass flow rate of compressed air regulated by a 5/3-way proportional directional valve and driven by a dynamical adaptive backstepping-sliding mode control (DAB-SMC) scheme is investigated. Implemented for the first time on a PAM-driven actuating system, derivation of this model-based nonlinear control scheme is presented first followed by experimental evaluation. Positioning performance is studied using a sinusoidal trajectory with tracking frequencies of 0.05, 0.1, 0.2 and 0.5 Hz, and a multiple-step polynomial input having step sizes of 0.7°, 1.4°, 2.9° and 5.7°. Over various operating conditions, average root mean square error value of 0.16° and steady-state error value of 0.04° are achieved for position tracking and regulating, respectively. The adaptive LuGre friction observer embedded in the control scheme effectively compensates hysteresis behaviour of the PAMs and helps to improve the performance. The proposed DAB-SMC scheme outperforms the classical SMC scheme by 33% in accuracy. The control scheme has also demonstrated a robust performance towards the uncertainties including loading. In addition, a slight performance compromise in both tracking and regulating tasks was observed, when the 5/3-way proportional valve is replaced by cost-effective 2/2-way pulse width modulation controlled on–off valves. 相似文献
17.
Jaime Gallardo-Alvarado 《Robotics and Computer》2012,28(2):220-226
In this work the jerk analysis of a 3-RRPS parallel manipulator to realize six degrees of freedom is approached by means of the theory of screws. The input/output equations of velocity, acceleration and jerk of the moving platform with respect to the fixed platform are obtained systematically by resorting to reciprocal-screw theory. A numerical example is included in order to show the application of the method of kinematic analysis. Furthermore, the numerical results obtained via screw theory are satisfactorily compared with simulations generated with the aid of commercially available software. 相似文献
18.
19.
Mojtaba Sharifi 《Advanced Robotics》2015,29(3):171-186
In this paper, a new nonlinear robust adaptive impedance controller is addressed for Unmanned Aerial Vehicles (UAVs) equipped with a robot manipulator that physically interacts with environment. A UAV equipped with a robot manipulator is a novel system that can perform different tasks instead of human being in dangerous and/or inaccessible environments. The objective of the proposed robust adaptive controller is control of the UAV and its robotic manipulator’s end-effector impedance in Cartesian space in order to have a stable physical interaction with environment. The proposed controller is robust against parametric uncertainties in the nonlinear dynamics model of the UAV and the robot manipulator. Moreover, the controller has robustness against the bounded force sensor inaccuracies and bounded unstructured modeling (nonparametric) uncertainties and/or disturbances in the system. Tracking performance and stability of the system are proved via Lyapunov stability theorem. Using simulations on a quadrotor UAV equipped with a three-DOF robot manipulator, the effectiveness of the proposed robust adaptive impedance controller is investigated in the presence of the force sensor error, and parametric and non-parametric uncertainties. 相似文献
20.
This paper proposes an adaptive robust fuzzy control scheme for path tracking of a wheeled mobile robot with uncertainties.
The robot dynamics including the actuator dynamics is considered in this work. The presented controller is composed of a fuzzy
basis function network (FBFN) to approximate an unknown nonlinear function of the robot complete dynamics, an adaptive robust
input to overcome the uncertainties, and a stabilizing control input. The stability and the convergence of the tracking errors
are guaranteed using the Lyapunov stability theory. When the controller is designed, the different parameters for two actuator
models in the dynamic equation are taken into account. The proposed control scheme does not require the accurate parameter
values for the actuator parameters as well as the robot parameters. The validity and robustness of the proposed control scheme
are demonstrated through computer simulations.
This work was presented in part at the 13th International Symposium on Artificial Life and Robotics, Oita, Japan, January
31–February 2, 2008 相似文献