首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the recent paper [Limon, D., Alvarado, I., Alamo, T., & Camacho, E.F. (2008). MPC for tracking of piece-wise constant references for constrained linear systems. Automatica, 44, 2382-2387], a novel predictive control technique for tracking changing target operating points has been proposed. Asymptotic stability of any admissible equilibrium point is achieved by adding an artificial steady state and input as decision variables, specializing the terminal conditions and adding an offset cost function to the functional.In this paper, the closed-loop performance of this controller is studied and it is demonstrated that the offset cost function plays an important role in the performance of the model predictive control (MPC) for tracking. Firstly, the controller formulation has been enhanced by considering a convex, positive definite and subdifferential function as the offset cost function. Then it is demonstrated that this formulation ensures convergence to an equilibrium point which minimizes the offset cost function. Thus, in case of target operation points which are not reachable steady states or inputs for the constrained system, the proposed control law steers the system to an admissible steady state (different to the target) which is optimal with relation to the offset cost function. Therefore, the offset cost function plays the role of a steady-state target optimizer which is built into the controller. On the other hand, optimal performance of the MPC for tracking is studied and it is demonstrated that under some conditions on both the offset and the terminal cost functions optimal closed-loop performance is locally achieved.  相似文献   

2.
Model predictive control (MPC) is one of the few techniques which is able to handle constraints on both state and input of the plant. The admissible evolution and asymptotic convergence of the closed-loop system is ensured by means of suitable choice of the terminal cost and terminal constraint. However, most of the existing results on MPC are designed for a regulation problem. If the desired steady-state changes, the MPC controller must be redesigned to guarantee the feasibility of the optimisation problem, the admissible evolution as well as the asymptotic stability. Recently, a novel MPC has been proposed to ensure the feasibility of the optimisation problem, constraints satisfaction and asymptotic evolution of the system to any admissible target steady-state. A drawback of this controller is the loss of a desirable property of the MPC controllers: the local optimality property. In this article, a novel formulation of the MPC for tracking is proposed aimed to recover the optimality property maintaining all the properties of the original formulation.  相似文献   

3.
A minimum variance performance map is introduced for constrained linear model predictive control (MPC). The minimum variance performance map provides a demonstration of the effect of constraints in an MPC on the best achievable controller performance. The constrained minimum variance controller is formulated for the MPC system to be monitored. Using multi-parametric quadratic programming (mp-QP), the linear, piecewise control law is obtained for the constrained minimum variance controller. The linear, piecewise control law is used with a Kalman filter to obtain the minimum output variance in each region of the state space partition. The minimum variance performance map is demonstrated on a second order process with a constraint on the input amplitude.  相似文献   

4.
This note presents a robust economic model predictive control controller suitable for changing economic criterion. The proposal ensures feasibility under any change of the economic criterion, thanks to the use of artificial variables and a relaxed terminal constraint, and robustness in presence of additive bounded disturbances. The resulting robust formulation considers a nominal prediction model and restricted constraints (in order to account for the effect of additive disturbances). The controlled system under the proposed controller is shown to be input‐to‐state stable in the sense that it is asymptotically steered to an invariant region around the best admissible steady state. An illustrative example shows the benefits and the properties of the proposed controller.  相似文献   

5.
Model predictive control (MPC) for Markovian jump linear systems with probabilistic constraints has received much attention in recent years. However, in existing results, the disturbance is usually assumed with infinite support, which is not considered reasonable in real applications. Thus, by considering random additive disturbance with finite support, this paper is devoted to a systematic approach to stochastic MPC for Markovian jump linear systems with probabilistic constraints. The adopted MPC law is parameterized by a mode‐dependent feedback control law superimposed with a perturbation generated by a dynamic controller. Probabilistic constraints can be guaranteed by confining the augmented system state to a maximal admissible set. Then, the MPC algorithm is given in the form of linearly constrained quadratic programming problems by optimizing the infinite sum of derivation of the stage cost from its steady‐state value. The proposed algorithm is proved to be recursively feasible and to guarantee constraints satisfaction, and the closed‐loop long‐run average cost is not more than that of the unconstrained closed‐loop system with static feedback. Finally, when adopting the optimal feedback gains in the predictive control law, the resulting MPC algorithm has been proved to converge in the mean square sense to the optimal control. A numerical example is given to verify the efficiency of the proposed results.  相似文献   

6.
Generalized terminal state constraint for model predictive control   总被引:1,自引:0,他引:1  
A terminal state equality constraint for Model Predictive Control (MPC) laws is investigated, where the terminal state/input pair is not fixed a priori but it is a free variable in the optimization. The approach, named “generalized” terminal state constraint, can be used for both tracking MPC (i.e. when the objective is to track a given steady state) and economic MPC (i.e. when the objective is to minimize a cost function which does not necessarily attains its minimum at a steady state). It is shown that the proposed technique provides, in general, a larger feasibility set with respect to the existing approaches, given the same prediction horizon. Moreover, a new receding horizon strategy is introduced, exploiting the generalized terminal state constraint. Under mild assumptions, the new strategy is guaranteed to converge in finite time, with arbitrarily good accuracy, to an MPC law with an optimally-chosen terminal state constraint, while still enjoying a larger feasibility set. The features of the new technique are illustrated by an inverted pendulum example in both the tracking and the economic contexts.  相似文献   

7.
On the stability of constrained MPC without terminal constraint   总被引:2,自引:0,他引:2  
The usual way to guarantee stability of model predictive control (MPC) strategies is based on a terminal cost function and a terminal constraint region. This note analyzes the stability of MPC when the terminal constraint is removed. This is particularly interesting when the system is unconstrained on the state. In this case, the computational burden of the optimization problem does not have to be increased by introducing terminal state constraints due to stabilizing reasons. A region in which the terminal constraint can be removed from the optimization problem is characterized depending on some of the design parameters of MPC. This region is a domain of attraction of the MPC without terminal constraint. Based on this result, it is proved that weighting the terminal cost, this domain of attraction of the MPC controller without terminal constraint is enlarged reaching (practically) the same domain of attraction of the MPC with terminal constraint; moreover, a practical procedure to calculate the stabilizing weighting factor for a given initial state is shown. Finally, these results are extended to the case of suboptimal solutions and an asymptotically stabilizing suboptimal controller without terminal constraint is presented.  相似文献   

8.
This paper is devoted to solve the problem that the predictive controllers may present when the target operation point changes. Model predictive controllers (MPC) are capable to steer an uncertain system to a given target operation point fulfilling the constraints. But if the target changes significantly the controller may not success due to the loss of feasibility of the optimization problem and the inadequacy of the terminal conditions.This paper presents a novel formulation of a robust model predictive controller (MPC) for tracking changing targets based on a single optimization problem. The plant is assumed to be modelled as a linear system with additive uncertainties confined to a bounded known polyhedral set. Under mild assumptions, the proposed MPC is feasible under any change of the target and steers the uncertain system to (a neighborhood of) the target if this is admissible. If the target is not admissible, and hence unreachable, the system is steered to the closest admissible operating point.The controller formulation has some parameters which provide extra degrees of freedom. These new parameters allow control objectives such as disturbance rejection, output offset prioritization or enlargement of the domain of attraction to be dealt with. The paper shows how these parameters can be calculated off-line.In order to demonstrate the benefits of the proposed controller, it has been tested on a real plant: the four tanks plant which is a multivariable nonlinear system configured to exhibit non-minimum phase transmission zeros. Experimental results show the robust stability and offset-free tracking of the controlled plant.  相似文献   

9.
A given explicit piecewise affine representation of an MPC feedback law is approximated by a single polynomial, computed using linear programming. This polynomial state feedback control law guarantees closed-loop stability and constraint satisfaction. The polynomial feedback can be implemented in real time even on very simple devices with severe limitations on memory storage.  相似文献   

10.
This article presents a model predictive control for tracking piecewise constant references with a new steady-state parametrisation. The modified algorithm is based on the artificial reference idea, but the number of decision variables is equal to the standard MPC for regulation. The proposed strategy is able to track admissible constant references with an admissible evolution. If the reference is not admissible, the system is steered to the closest admissible stationary point. A modified initialisation algorithm is proposed to recover the enlarged domain of attraction provided by related artificial reference-based strategies. Simulation examples are presented to illustrate the benefits of the proposed strategy.  相似文献   

11.
This paper develops a novel robust tracking model predictive control (MPC) without terminal constraint for discrete-time nonlinear systems capable to deal with changing setpoints and unknown non-additive bounded disturbances. The MPC scheme without terminal constraint avoids difficult computations for the terminal region and is thus simpler to design and implement. However, the existence of disturbances and/or sudden changes in a setpoint may lead to feasibility and stability issues in this method. In contrast to previous works that considered changing setpoints and/or additive slowly varying disturbance, the proposed method is able to deal with changing setpoints and non-additive non-slowly varying disturbance. The key idea is the addition of tightened input and state (tracking error) constraints as new constraints to the tracking MPC scheme without terminal constraints based on artificial references. In the proposed method, the optimal tracking error converges asymptotically to the invariant set for tracking, and the perturbed system tracking error remains in a variable size tube around the optimal tracking error. Closed-loop input-to-state stability and recursive feasibility of the optimization problem for any piece-wise constant setpoint and non-additive disturbance are guaranteed by tightening input and state constraints as well as weighting the terminal cost function by an appropriate stabilizing weighting factor. The simulation results of the satellite attitude control system are provided to demonstrate the efficiency of the proposed predictive controller.  相似文献   

12.
Recent papers (IEEE Transactions on Automatic Control 48(6) (2003) 1092-1096, Automatica 38 (2002) 1061-1068, Systems and Control Letters 48 (2003) 375-383) have introduced dual-mode MPC algorithms using a time-varying terminal cost and/or constraint. The advantage of these methods is the enlargement of the admissible set of initial states without sacrificing local optimality of the controller, but this comes at the cost of a higher computational complexity. This paper delivers two main contributions in this area. First, a new MPC algorithm with a time-varying terminal cost and constraint is introduced. The algorithm uses convex combinations of off-line computed ellipsoidal terminal constraint sets and uses the associated cost as a terminal cost. In this way, a significant on-line computational advantage is obtained. The second main contribution is the introduction of a general stability theorem, proving stability of both the new MPC algorithm and several existing MPC schemes (IEEE Transactions on Automatic Control 48(6) (2003) 1092-1096, Automatica 38 (2002) 1061-1068). This allows a theoretical comparison to be made between the different algorithms. The new algorithm using convex combinations is illustrated and compared with other methods on the example of an inverted pendulum.  相似文献   

13.
针对一类输入和状态受约束的离散线性系统,提出一种基于Ⅳ步容许集的变终端约束集模型预测控制方法.首先给出多面体不变集序列作为终端约束集的离线模型预测控制算法,扩大了终端约束集.为进一步扩大初始状态可镇定区域,引入N步容许集,设计了基于容许集的变终端约束集模型预测控制方法.该算法采用离线设计、在线优化方法,实现了系统渐近稳定,不仅降低了在线运算量,而且扩大了初始状态可镇定区域.仿真结果表明了算法的有效性.  相似文献   

14.
In this paper, we develop an algorithm to compute robust MPC explicit solutions for constrained MIMO systems with internal uncertainties and external disturbances. Our approach is based on a recursive closed‐loop prediction strategy to realize a finite horizon robust MPC regulator, which has the feature that only one‐step state prediction is sufficient to realize robust MPC with an arbitrary prediction horizon. The paper defines a set of recursive sub‐optimization problems as multiple‐parametric sub‐quadratic programming (mp‐SQP), and shows that the optimal solution to the mp‐SQP problem is piecewise affine functions of states, associated with piece objectives and state critical regions. Asymptotic closed‐loop stability can be guaranteed by a terminal weighting and a terminal feedback gain; also by introducing two tuning variables, the algorithm is capable of adjusting the trade‐off between system performance and robustness. The state admissible set, which is not easily derived from physical vision, is constructed by two methods: a piecewise linear norm of signals, and polyhedral Voronoi sets. Finally, two simulation examples demonstrate that the algorithm is efficient, feasible and flexible, and can be applied to both slow and fast industrial MIMO systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
In the standard model predictive control implementation, first a steady-state optimization yields the equilibrium point with minimal economic cost. Then, the deviation from the computed best steady state is chosen as the stage cost for the dynamic regulation problem. The computed best equilibrium point may not be the global minimum of the economic cost, and hence, choosing the economic cost as the stage cost for the dynamic regulation problem, rather than the deviation from the best steady state, offers potential for improving the economic performance of the system. It has been previously shown that the existing framework for MPC stability analysis, which addresses to the standard class of problems with a regulation objective, does not extend to economic MPC. Previous work on economic MPC developed new tools for stability analysis and identified sufficient conditions for asymptotic stability. These tools were developed for the terminal constraint MPC formulation, in which the system is stabilized by forcing the state to the best equilibrium point at the end of the horizon. In this work, we relax this constraint by imposing a region constraint on the terminal state instead of a point constraint, and adding a penalty on the terminal state to the regulator cost. We extend the stability analysis tools, developed for terminal constraint economic MPC, to the proposed formulation and establish that strict dissipativity is sufficient for guaranteeing asymptotic stability of the closed-loop system. We also show that the average closed-loop performance outperforms the best steady-state performance. For implementing the proposed formulation, a rigorous analysis for computing the appropriate terminal penalty and the terminal region is presented. A further extension, in which the terminal constraint is completely removed by modifying the regulator cost function, is also presented along with its stability analysis. Finally, an illustrative example is presented to demonstrate the differences between the terminal constraint and the proposed terminal penalty formulation.  相似文献   

16.
基于约束线性优化控制问题的多参数二次规划求解方法, 提出设计显式模型预测控制系统的可行域逐步扩张算法. 首先建立一种求取优化控制问题输出不变集的迭代算法. 以该输出不变集作为多参数规划问题中状态区域约束限制的初始条件, 通过反复求解多参数规划问题和不断改变状态区域约束限制, 能够逐步扩大显式模型预测控制系统的无限时间可行区域, 直到可行域不再继续扩大. 算法收敛时设计得到的显式模型预测控制系统在其所有的状态分区上都是无限时间可行的. 通过数值仿真计算, 验证本文提出算法的有效性.  相似文献   

17.
This paper proposes constructing a reference governor for constrained linear systems with time-varying references. The main feature of the constructed reference governor is to simultaneously consider fulfillment of state and control constraints, as well as tracking performance by appropriately managing the reference to be inputted. To achieve constraint fulfillment and to evaluate tracking performance, the reference management is reduced into a convex quadratic programming problem using the concept of a maximal output admissible set. The reference governor is finally obtained in the form of a piecewise affine function of state and reference variables by means of a multi-parametric programming technique. In addition, the effectiveness of the reference governor is demonstrated by numerical and experimental examples of a practical DC position servomechanism with the control constraint.  相似文献   

18.
The input-state linear horizon (ISLH) for a nonlinear discrete-time system is defined as the smallest number of time steps it takes the system input to appear nonlinearly in the state variable. In this paper, we employ the latter concept and show that the class of constraint admissible N-step affine state-feedback policies is equivalent to the associated class of constraint admissible disturbance-feedback policies, provided that N is less than the system’s ISLH. The result generalizes a recent result in [Goulart, P. J., Kerrigan, E. C., Maciejowski, J. M. (2006). Optimization over state feedback policies for robust control with constraints. Automatica, 42(4), 523-533] and is significant because it enables one: (i) to determine a constraint admissible state-feedback policy by employing well-known convex optimization techniques; and (ii) to guarantee robust recursive feasibility of a class of model predictive control (MPC) policies by imposing a suitable terminal constraint. In particular, we propose an input-to-state stabilizing MPC policy for a class of nonlinear systems with bounded disturbance inputs and mixed polytopic constraints on the state and the control input. At each time step, the proposed MPC policy requires the solution of a single convex quadratic programme parameterized by the current system state.  相似文献   

19.
This paper studies the control of constrained systems whose dynamics and constraints switch between a finite set of modes over time according to an exogenous input signal. We define a new type of control invariant sets for switched constrained systems, called switch–robust control invariant (switch‐RCI) sets, that are robust to unknown mode switching and exploit available information on minimum dwell‐time and admissible mode transitions. These switch‐RCI sets are used to derive novel necessary and sufficient conditions for the existence of a control‐law that guarantees constraint satisfaction in the presence of unknown mode switching with known minimum dwell‐time. The switch‐RCI sets are also used to design a recursively feasible model predictive controller (MPC) that enforces closed‐loop constraint satisfaction for switched constrained systems. We show that our controller is nonconservative in the sense that it enforces constraints on the largest possible domain, ie, constraints can be recursively satisfied if and only if our controller is feasible. The MPC and switch‐RCI sets are demonstrated on a vehicle lane‐changing case study.  相似文献   

20.
This paper presents a method for enlarging the domain of attraction of nonlinear model predictive control (MPC). The usual way of guaranteeing stability of nonlinear MPC is to add a terminal constraint and a terminal cost to the optimization problem such that the terminal region is a positively invariant set for the system and the terminal cost is an associated Lyapunov function. The domain of attraction of the controller depends on the size of the terminal region and the control horizon. By increasing the control horizon, the domain of attraction is enlarged but at the expense of a greater computational burden, while increasing the terminal region produces an enlargement without an extra cost.In this paper, the MPC formulation with terminal cost and constraint is modified, replacing the terminal constraint by a contractive terminal constraint. This constraint is given by a sequence of sets computed off-line that is based on the positively invariant set. Each set of this sequence does not need to be an invariant set and can be computed by a procedure which provides an inner approximation to the one-step set. This property allows us to use one-step approximations with a trade off between accuracy and computational burden for the computation of the sequence. This strategy guarantees closed loop-stability ensuring the enlargement of the domain of attraction and the local optimality of the controller. Moreover, this idea can be directly translated to robust MPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号