首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
公伯峡面板堆石坝施工期面板温度应力研究   总被引:1,自引:0,他引:1  
面板堆石坝施工期的面板温度应力是可能导致面板产生表面及贯穿性裂缝的主要应力.结合在建的公伯峡面板堆石坝,考虑影响面板温度应力的各种因素,采用非线性有限元法对施工期的面板温度场和温度应力进行了全过程仿真分析,获得了对面板混凝土施工具有重要意义的研究成果。  相似文献   

2.
本重点探讨面板堆石坝在施工期及运行期面板混凝土受来自坝体、面板自身的自重和外界水压、温度、寒潮及干缩等荷载作用下的变形性能及应力状态。研究结果表明:温度应力是引起面板堆石坝混凝土面板裂缝的主要因素之一。  相似文献   

3.
王瑞骏  陈尧隆 《水力发电》2004,30(1):181-187
结合公伯峡面板堆石坝,考虑影响湿度及干缩应力的各项因素,按面板混凝土浇筑时有无表面养护两种工况(状态),实时模拟面板的施工过程,对施工期面板的湿度场和干缩应力进行全过程有限元仿真分析,获得了施工期面板湿度场及干缩应力的变化及分布规律。  相似文献   

4.
朱锦杰  王玉洁  张猛 《水力发电》2013,(4):40-42,46
公伯峡大坝面板在水库运行后出现竖向裂缝,每年寒冬后,裂缝不断增加。根据大坝变形监测成果,反演得到坝体堆石E-B模型参数及流变参数,计算分析和预测面板堆石坝变形、面板结构应力,并针对冬季严寒低温、寒潮温降、昼夜温差等恶劣气候条件,进行面板温度应力变化规律和分布规律以及库水位对面板温度应力敏感性分析,得出温度应力是导致面板产生竖向裂缝的主要因素,堆石体流变增加的结构应力是两侧面板裂缝进一步发展的推动因素。  相似文献   

5.
本文分析了堆石坝混凝土面板的结构特点和温度场及温度应力场特点,结合具体工程,采用有限单元法对混凝土面板在正常气温条件,遭遇气温骤降和采取表面保护状态下的温度场及温度应力场进行了系统的计算分析,明确了混凝土面板的温度场及温度应力场规律,提出了预防混凝土面板温度裂缝的措施,对混凝土面板堆石坝的设计与施工工具有一定的参考价值。  相似文献   

6.
公伯峡面板堆石坝过渡料采用爆破技术进行开采,通过进行爆破试验对比分析,选择出了适合公伯峡地区岩石条件的设计要求的爆破参数。文中介绍了过渡料开采爆破试验的方法、途径及推荐爆破参数。  相似文献   

7.
混凝土面板温度收缩应力及相关参数分析   总被引:9,自引:0,他引:9  
面板结构受到三咱类型力的作用,即由温度、湿度变化引起的收缩应力;由面板材料基体受到的物理化学作用引起的膨胀应力和由外荷载作用产生的应力。其中,温度变形引起的裂缝占总体的80%以上。研究发现,综合温差、徐变变形、基础约束及混凝土面板线膨胀系数都对面板温度收缩应力有显著影响,通过降低这些因素的不利影响,保证面板具有适当的抗拉强度,可以做到200m级高面板堆石坝特长面板少出现裂缝或不出现裂缝。  相似文献   

8.
公伯峡混凝土面板堆石坝位移反演分析   总被引:1,自引:0,他引:1  
采用基于综合应用人工神经网络和演化算法的位移反演分析方法,对在建的公伯峡面板堆石坝坝体沉降变形的现场观测结果进行了反演分析,并通过与坝料室内试验和现场载荷试验结果对比,讨论分析了4种主要坝料在现场条件下的变形特性、分析结果表明,公伯峡面板堆石坝坝料现场的填筑质量较好,主要坝料的变形模量均大于相应由试验室试验得到的模量值.3BⅡ砂砾石料在现场碾压条件下可获得较高的变形模量值,是一种优良的筑坝材料.  相似文献   

9.
堆石坝混凝土面板温度应力分析研究   总被引:1,自引:0,他引:1  
薛继乐  王忠 《吉林水利》2005,(10):26-30
本文结合新疆吉林台面板堆石坝的设计方案,应用能模拟堆石体施工过程的有限元模型和计算方法,研究了寒冷地区的堆石坝混凝土面板在温度荷载作用下的应力分布规律.同时,通过在面板与垫层以及面板与趾板之间不设置接触单元和设置接触单元的两种计算方案的比较,探讨接触单元在混凝土面板温度应力有限元计算模型中的应用.计算研究表明,在冬天寒流侵袭时,面板中下部将出现大于混凝土抗拉强度的拉应力值;设置文中所述的接触单元是可行的,这样更能模拟面板的实际受力情况.  相似文献   

10.
《人民黄河》2017,(10):121-124
混凝土面板堆石坝主要靠上游面板挡水,施工期面板裂缝是影响面板堆石坝质量和安全的关键因素之一。面板混凝土属于准大体积混凝土,尽管其散热面较大、最高水化热温升不是很高,但如果不采取合理的温控防裂措施,仍然会导致面板产生温度裂缝。针对施工期面板混凝土温度裂缝问题,以某在建高混凝土面板堆石坝工程为例,建立了包含地基的三维有限元温度场和徐变温度应力场仿真模型,利用数值方法产生神经网络的学习样本,然后采用遗传算法优化的BP神经网络对所获得的样本进行网络训练,从而获得温控措施优选网络模型,进行已知混凝土热力学材料参数情况下的温控措施优选。由神经网络优选结果可知,本文所采用的面板混凝土温控措施优选方法是合理可行的。  相似文献   

11.
潘口水电站筑坝材料繁多,主堆石区又是采用两种料源互层填筑,给大坝填筑施工带来很大难度。根据施工总进度计划,大坝填筑共分Ⅵ期进行,采用进占法施工,遵循“先粗后细、全断面均匀上升”的原则,各道工序流水作业,各区之间标识明显。施工质量控制采取以过程控制为主、现场检查为辅的双控措施。对施工措施和质量保证措施作了详细介绍,可供同类工程参考。  相似文献   

12.
介绍洪家渡水电站面板堆石坝在面板接缝止水施工中对异形铜止水接头采用工厂整体冲压制作、对铜止水采用止水成型机冷挤压现场轧制成型的新工艺、新方法,以及在混凝土面板表面止水中采用GB柔性填料和GB三复合板等新型材料等的情况。这些新工艺、新方法、新材料的运用,使混凝土面板接缝止水的施工质量得到了可靠的保证。  相似文献   

13.
根据引子渡水电站大坝施工采用枯期围堰挡水、汛期坝体临时断面挡水的全年导流方式 ,针对河床狭窄 ,坝基开挖、溢洪道开挖、坝体填筑等施工比较困难的实际 ,介绍了引子渡水电站面板堆石坝的施工特点 ,包括交通布置、大坝填筑施工分期规划、料场选择及土石方平衡、溢洪道开挖及大坝填筑入仓道路规划等。  相似文献   

14.
1 概况 马来西亚巴贡水电站位于马来西亚东部沙捞越州的拉让江上,属热带雨林气候,全年高温多雨,多年平均降雨量约4 500 mm/n,电站总装机容量8×300 MW.电站混凝土面板堆石坝最大坝高205 m,坝顶坝轴线长740 m,面板总面积约12.9万m2,共有50块面板组成,面板上游坡比1:1.4.大坝混凝土面板从高程34.40 m至高程230.40 m共计196 m高,混凝土面板厚度为一渐变值,高程210.80 m以下混凝土面板区厚度值为T=300+3 x(229-H)mm,高程210.80 m以上混凝土面板非加厚区厚度由354.6 mm渐变至300 mm.加厚区面板混凝土厚度由812 mm渐变至554.6 mm.本工程面板共分两期施工,采用无轨滑模进行混凝土面板施工.单次最大施工长度为207 m,单块最大施工面积为2 977 m2.面板混凝土结构布置见图1.  相似文献   

15.
本文介绍了高凤山电站混凝土施工的质量控制目标、要点和措施,通过贯彻以人为本的质量管理理念,增强全员质量意识,改进施工技术工艺等,取得了良好的效果,实现了优良工程质量目标。  相似文献   

16.
介绍芹山水电站混凝土面板堆石坝施工质量控制参数及出现的各种问题和采用的处理方法 ,并阐述了合理把握施工中的质量控制环节、确保施工质量的控制实施过程  相似文献   

17.
梨园水电站混凝土面板堆石坝趾板与面板通过周边缝止水相连接,是该坝防渗体系的重要组成部分。面临高温,工期紧等难题,施工采取了优化混凝土配合比、合理分缝分块、细化混凝土运输方式和入仓手段、加强混凝土振捣、保温养护和止水保护、设置后浇带、先浇筑找平层等保温和防裂措施。这样,不但减少了对趾板混凝土的约束,预防了裂缝,而且混凝土浇筑质量也确保并满足了其结构安全及使用功能,对同类型的混凝土施工有一定的借鉴。  相似文献   

18.
1 填筑过程中常见的质量问题 巴贡水电站钢筋混凝土面板堆石坝最大坝高205 m,总填筑量约1762万m<'3>.填筑料的种类分为:1A、1B、2A、2B、3A、3B、3C和3D.在填筑过程中,常见质量问题总结如下:(1)料源,巴贡大坝料源主要来自于W9料场和结构开挖,在爆破过程中有时候会出现石料污染的情况;选料不能严格按照石料要求;装车时,级配控制不严或土石混装;在运输时,偶尔会将坝料卸错位置等.  相似文献   

19.
本文介绍了高凤山电站工程大体积混凝土的施工温控措施,阐明了温控的系统性和复杂性,指出大体积混凝土温控取得良好效果的关键在于对施工的各个环节的施工要素实行系统的、科学的策划和严格的过程管理控制,在技术、管理和经济效益三者中寻求最佳平衡点。  相似文献   

20.
小山水电站面板堆石坝初建阶段度汛采用堰挡水、导流洞泄流,完建阶段度汛采用大坝临时挡水、导流洞泄流的方式。通过 汛标准、方式、措施的分析论证,适当降低了大坝围堰及大坝坝体的挡水度汛标准,并采取了有效的措施,确保了主体工程顺利进行,提前工程建设工期1年,并为工程节省投资数百万元。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号