首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
LIGA技术制作微反应器的研究   总被引:5,自引:1,他引:5  
介绍了微反应器的基本原理,根据化学反应传质和传热的需求,对反应微管道的几何形状和尺寸进行了初步设计,并利用LIGA技术制作完成了一种用于催化反应的微反应器。  相似文献   

2.
提出了以声表面波为能量源的微反应器.它由两个128°YX-LiNbO3压电基片和弧形聚合物组成,基片A中反应物Ⅰ由其上声表面波驱动经弧形聚合物输运到基片B,并与基片B中的反应物Ⅱ混合,混合反应物在基片B中的声表面波作用下实现反应.实验结果表明,油包封反应物可减少反应物的蒸发速率;声表面波可提高化学反应速率,并随之增大而增大.  相似文献   

3.
4.
微反应器中的微制作技术   总被引:3,自引:0,他引:3  
探讨了微反应器制作技术的创新与优化,分析了微反应器的基本结构与常用材料,总结了它的三种主要加工技术,即硅体微加工、超精密加工与LIGA工艺,以及四种常用的连接方法,即键合技术、高能束焊接、扩散焊与粘接,指出了在选材、加工、连接等方面应注意的问题,并给出了相应的实例,其中包括一台利用铁-铬-铝不锈钢片制作的甲醇重整制氢微反应器,它采用放电加工和湿法刻蚀技术,用扩散焊实现了连接密封,经100 h的连续试验表明,该微反应器可以与10 W的燃料电池配套使用。最后指出了目前在该领域存在的主要问题。  相似文献   

5.
本文针对微滴喷射过程中存在的墨雾、卫星滴以及喷头堵塞问题,使用COMSOL仿真软件通过水平集方法对微滴喷射过程进行仿真分析,得到墨水黏度、表面张力等工艺参数对液滴喷射过程中形态的影响规律。采用CCD液滴观测仪对微滴喷射过程进行实时观测和图像采集,将观测图像与仿真结果进行对比,得到微液滴在打印过程中最佳的工艺参数,确定墨水最优的打印温度,仿真和实验结果验证了理论分析的正确性和所提方法的可行性。  相似文献   

6.
未永  吕玉山 《压电与声光》2014,36(3):476-479
为了得到驱动电压波形对收缩管型压电微滴喷射性能的影响规律,基于Bogy等提出的压力波传递理论,分析了收缩管型压电微滴喷射头喷腔中的压力传导过程。构建了压电微滴喷射系统的实验平台,以质量分数为58%的甘油和水混合液为实验中的喷射对象,对微滴喷射过程中驱动电压的脉冲宽度、幅值和频率对微滴喷射性能的影响进行了研究。研究结果表明,随着驱动电压脉冲宽度的增大,所形成的液滴速度和直径呈先增大后减小,微滴喷射过程存在最佳电压脉冲保持时间;随着驱动电压脉冲幅值的增大,所形成的液滴速度和直径均增大;随着操作频率的增大,在一定范围内,液滴速度和直径几乎不受影响,但频率过大时,喷射会发生混乱。  相似文献   

7.
微尺度流动的雷诺数(Re)比较低,其混合主要通过扩散来完成,因此需要较长的距离与时间才能混合均匀。为实现微尺度低Re数流体的快速均匀混合,以甲醇及染色甲醇为工质,采用脉冲电压激励微铂膜产生可控气泡,并以气泡周期性胀缩产生的脉冲压力为动力源,研究脉冲压力横向扰动产生的混沌流对微通道内流动混合的影响。结果表明:脉冲压力横向作用使流体的交界面产生了强烈的卷曲拉伸,有效地强化了混合,该微混合器能够在毫米级混合长度及毫秒级混合时间内快速均匀混合,脉冲频率越高,混合效果越好。本研究结果为解决微尺度下低Re数流动混合难题提供了一种有效的崭新手段。  相似文献   

8.
《微纳电子技术》2020,(2):148-154
介绍了一种基于数字化石蜡液滴微喷射技术制作微流控芯片的方法及其应用,制作的聚二甲基硅氧烷(PDMS)微流控芯片可用于微液滴的生成和两相流的微混合。实验所需玻璃微喷嘴制备简单、成本低廉。石蜡阳模的形状可自主设计,通过调节驱动电压、驱动频率和加热温度可控制石蜡液滴尺寸及石蜡线宽。利用此方法在石英玻璃基底上打印出石蜡阳模,通过PDMS溶液浇注、固化、倒模、清洗再与石英玻璃基板键合等一系列工艺,最终可实现不同内径、不同流道形状的PDMS芯片,制作过程方便快捷,成品质量较好,设计自由度较高。最终通过调整系统各项参量制作出流道内径约为235μm的PDMS微流控芯片,并利用所制作的十字型流道PDMS微流控芯片生成了微液滴,用螺旋形流道的PDMS微流控芯片完成了亮蓝、柠檬黄两种颜色水溶液的微混合。  相似文献   

9.
10.
以生物微反应器中培养液pH在线监测为目标,研制出一种基于光度吸收原理的阵列光纤传感器。利用MEMS加工工艺,制备出传感器的阵列吸光池芯片,采用光学软件对吸光池进行优化设计,提高了传感器光传输效率,并通过CFD软件进行流体模拟,优化吸光池结构,降低了溶液死体积,缩短传感器响应时间。实验结果表明,所研究的传感器阵列检测灵敏度为0.83V/pH,响应速度快,可用于多个生物微反应器的pH在线监测。  相似文献   

11.
基于介电润湿研制了一种将零电极布局为介电层表面的双极板结构数字微流控芯片.为了降低驱动电压并提高介电层的抗击穿能力,将介电层设计为Si3N4-SiO2层状复合结构.30 V直流电压作用下,成功实现了对0.5 μL去离子水微液滴的连续输运操控;且在100 V以内电压作用时,均未出现介电层击穿.实验结果表明所研制数字微流控芯片可行.  相似文献   

12.
提出了一种新的油相微通道内微流体融合方法.在128°YX-LiNbO3基片上光刻叉指换能器(IDT)和反射栅,模塑法制作的聚二甲基硅氧烷(PDMS)微通道贴合于压电基片的声路径上,在PDMS微通道内采用微量进样器注入石蜡油和待融合微流体.经功率放大器放大后的射频(RF)电信号加到IDT上,激发声表面波(SAW),驱动微通道内的待融合微流体,实现其融合.实验结果表明,在SAW作用下,微通道内微流体的融合决定于加到IDT上RF信号功率、待融合微流体直径和待融合微流体间距.  相似文献   

13.
数字同轴全息对刀技术中微细铣刀全息再现像的自动聚焦是实现高精度自动对刀的关键技术,其中聚焦评价函数是判别图像质量的依据.通过比较几种常用的聚焦评价函数的评价性能,探讨了数字全息自动对焦过程中刀具的成像特点以及适用的聚焦评价方法,发现小波变换聚焦评价函数能适应高精度聚焦的需要.针对自动调焦问题,提出一种分段递进搜索方法,将搜索过程分为两个过程:大步距粗调和小步距精调,分段搜索最优解.然后比较分析了所提搜索方法与经典的模拟退火算法和Levenberg-Marquardt算法的搜索性能.实验结果表明,所提分段递进搜索方法适用性更强,并通过计算机模拟实验进一步验证了其有效性.  相似文献   

14.
针对Kopin公司的AM LCD微显示器, 提出了一种头盔显示器数字像源的设计方法, 包括显示器件、驱动方式、时序控制及数据处理方法等, 形成了头盔显示器数字像源的产品实物, 满足了相关性能指标的要求。  相似文献   

15.
提出了一种微半球谐振子分次吹制工艺新方法,通过增加第二次旋转吹制的方式,以补偿第一次吹制过程中由于温度场不均匀性造成的谐振子对称度误差。设计了微半球陀螺整体工艺方案,并制作了硼硅酸玻璃材质的微半球谐振子及陀螺样品,测试结果表明,分次吹制后的谐振子频差由单次吹制的30~60 Hz降至10 Hz以内。经与力平衡控制电路联调,陀螺零偏不稳定性为8.2 (°)/h。  相似文献   

16.
严重的输电线路覆冰会造成断线、倒塔等事故,而严重的覆冰多处于微地形微气象区。通过对在线监测技术原理和输电线路覆冰理论的深入研究,针对微地形微气象区设计出一种新型的输电线路覆冰在线监测装置,解决了现有在线监测装置只能辅助人工巡视的局限性,并成功运用于输电线路,通过分析其采集数据验证了装置的可行性,可以更好地提高线路巡检工作效率和质量。  相似文献   

17.
根据微通道板芯皮料玻璃的性质,选择了腐蚀工艺的腐蚀液,即HCl和NaOH溶液.利用真空压差法和显微镜形貌分析法,检测和分析了微通道板腐蚀工艺中通道的腐蚀进程.在腐蚀过程中,利用测量微通道板质量损失法衡量了腐蚀的程度,并检查了腐蚀效果.依据实验结果分析,提出了有效的微通道板酸-碱-酸交替腐蚀工艺以及具体的工艺参数.采用此工艺,可使芯料和芯皮料扩散层被完全腐蚀,同时避免了皮料被腐蚀,得到了光滑的通道壁,形成稳定的二次电子发射层.  相似文献   

18.
电子束三维光刻技术的研究   总被引:3,自引:5,他引:3  
在IH(Integrated Harden Polymer Stereo Lithography)技术和电子束光刻技术的基础上提出了电子束微三维光刻技术新概念。对其实现方法的可行性进行了简要的理论分析,并使用SDV—Ⅱ型真空腔在约1.33Pa的真空下对环氧618、WSJ-202和苏州2号抗蚀剂进行了气化试验,得出了它们在真空中的气化实验结果,证明了电子束液态光刻的可行性。  相似文献   

19.
分别采用TO-CAN和SMT形式对微声学器件进行了封装,并对封装后的器件进行了耦合腔测试和指向性测试。测试结果表明,通过减小前入声孔直径大小,能够抑制微音频器件的高频响应;另外通过采用不同的封装结构参数,能够实现∞形和心脏形指向性的微超声器件。  相似文献   

20.
研制了一种新的声表面波控制开关的微阀。在128°YX-LiNbO3基片上光刻叉指换能器,其激发的声表面波加热微槽内石蜡油,熔融其上方微腔内固体石蜡,石蜡由于相变化而体积膨胀,使得微腔顶部的聚二甲基硅氧烷(PDMS)薄膜发生形变,微阀由开态转变为关态。红色染料溶液微流体为实验对象进行微阀操作实验,结果表明,声表面波可有效实现微阀的控制,且微阀开关时间随所加电信号功率增加而减少,在32dBm电信号功率作用下,微阀关闭时间为3min。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号