首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
为充分挖掘沉淀强化型镍基高温合金GH4202管材性能,以满足我国航天新型发动机的要求,研究了固溶处理温度对合金组织及拉伸性能的影响规律.结果表明,在1 050~1 075℃范围固溶处理后合金晶粒度无明显变化,当固溶温度升至1 100℃时,合金局部出现异常晶粒长大,当固溶温度达到1 150℃时,合金晶粒均匀长大.随固溶温度升高,合金晶界硼、碳化物数量明显减少,由链状向孤立的颗粒状转变.随固溶温度升高,GH4202合金室温及高温拉伸强度均呈降低趋势,尤其以屈服强度降低幅度最为显著.合金的室温面缩率随固溶温度升高而降低,且降低幅度较大,但室温断裂延伸率变化并不显著;700℃下合金的断面收缩率与断裂延伸率随固溶温度的变化均表现为先升高后降低的趋势.GH4202合金最佳固溶处理工艺为1 110℃保温30 min后水冷,此时合金晶粒度为5.0级、晶界碳化物呈细小链状,晶内沉淀强化γ'相弥散析出,可保证合金具有优异的室温及高温力学性能.  相似文献   

2.
对热连轧GH4169合金在固溶处理过程中晶粒长大规律进行了系统的研究。研究结果表明,该合金δ相溶解温度在990~1 000℃之间,δ相对晶粒长大有显著阻碍作用,在低于δ相溶解温度进行固溶处理时,析出的δ相使得晶粒长大缓慢;在高于δ相溶解温度以上时,晶粒随温度的升高快速长大。晶粒长大动力学表明:在高于δ相固溶线温度以上进...  相似文献   

3.
研究了1050~1150℃固溶处理对20 kg真空感应炉熔炼的690镍基合金(%:0.020C、29.93Cr、9.82Fe、0.19Al、0.25 Ti、0.023Nb、0.012Mo、0.004 2N)1.0mm冷轧板的组织和力学性能的影响。结果表明,当固溶温度从1050℃提高至1100℃,平均晶粒尺寸呈线性增长,从12μm提高到29μm,超过1100℃时晶粒尺寸快速增长,1150℃时平均晶粒尺寸达58μm;1090℃以上固溶处理时,合金中富铬碳化物完全溶解;690镍基合金主要强化机制为细晶强化,随固溶温度升高,合金室温抗拉和屈服强度分别从780 MPa和400 MPa降至662.5 MPa和250MPa,伸长率由40%提高至51.75%。  相似文献   

4.
蒋世川  张健  刘庭耀  赖宇 《钢铁钒钛》2019,40(5):150-156
研究了固溶温度和保温时间对GH3128合金奥氏体晶粒长大的影响。结果表明:随着固溶温度的升高和保温时间的延长,奥氏体晶粒尺寸逐渐增大;与保温时间相比,加热温度对晶粒尺寸的影响更显著;当固溶温度≥1 180℃时,随着温度的升高或保温时间的延长奥氏体晶粒长大速率明显加快,当固溶温度1 180℃时,保温时间对奥氏体晶粒的长大影响较小;通过线性回归分析建立了GH3128合金在不同固溶温度和保温时间下的晶粒长大模型。  相似文献   

5.
为解决GH4169合金带材国产化制备工艺不成熟导致的组织及性能控制不稳定问题,对厚度为0.4 mm的GH4169合金带材的热处理工艺进行研究。讨论了不同退火温度、不同保温时间对带材金相组织、力学性能的影响,结果表明,退火温度对带材显微组织和力学性能存在显著影响,随着退火温度的提高,合金带材晶粒尺寸增大,同时合金抗拉强度、屈服强度和硬度呈下降趋势,而伸长率呈升高趋势;适当缩短保温时间可以使晶粒尺寸均匀,并起到细化晶粒的作用,与此同时,合金力学性能表现出抗拉强度、屈服强度和硬度增大,同时伸长率呈下降趋势。综合分析组织及性能,0.4 mm的GH4169合金带材最佳退火工艺为退火温度1 050℃、保温时间1.5 min,在该工艺下带材的晶粒度为8.5级,抗拉强度为870.5 MPa,屈服强度为389.5 MPa,伸长率为51.5%,维氏硬度为204HV1。  相似文献   

6.
研究了GH 2787合金在不同固溶温度处理后的组织性能.结果表明,在900、940和980℃固溶处理时,GH 2787合金的晶粒尺寸分别为20、30和40μm.当固溶温度低于γ'溶解温度时,GH 2787合金中的γ'相分布均匀,并有少量针状的η相出现.900℃固溶处理时,GH 2787合金硬度、屈服强度和拉伸强度最高.GH 2787合金的主要强化方式为γ'相沉淀强化和晶界强化.  相似文献   

7.
通过对GH4098合金的柯利布尔实验及不同温度的固溶处理,研究了合金的高温塑性及晶粒长大倾向.探讨了固溶处理温度对合金室温性能的影响.确定了合金的晶粒长大突变温度及理想热变形温度.  相似文献   

8.
采用电子背散射衍射(EBSD)研究了固溶温度对旋压C-276合金超薄壁管材再结晶、晶界特征分布的影响;运用拉伸试验机和扫描电子显微镜(SEM)研究了固溶温度对合金力学性能及断口形貌的影响。结果表明:随固溶温度升高,完全再结晶比率上升;固溶温度为900℃时,合金未充分再结晶,完全再结晶比率为65%;固溶温度为1100℃时,完全再结晶比率达到99.4%。固溶温度高于1000℃时晶粒快速长大,固溶温度达1200℃时,平均晶粒尺寸为77.1μm。随固溶温度升高,Σ3晶界比率呈增高趋势,固溶温度900℃时,Σ3晶界所占比率为30.5%,固溶温度升高到1200℃时,Σ3晶界比率达到57.1%。固溶温度由900℃升高到1200℃,超薄壁管材室温抗拉强度R_m从1256 MPa降低到745 MPa,屈服强度R_(p0.2)从915 MPa降低到340 MPa,伸长率A_(11.3)从17.5%上升到65.5%。  相似文献   

9.
合理的热处理制度能显著影响β钛合金的显微组织和强化行为。通过对一种新型Ti-Al-V-Mo-Cr-Zr-Nb-Fe亚稳β钛合金的固溶时效处理,研究了热处理工艺对该合金组织与力学性能的影响。结果表明:该合金720℃固溶处理后,可以获得单一均匀的等轴β晶粒,为最佳固溶温度;经440~520℃时效处理后,发现时效温度对该新型合金α相析出的形态与尺寸的影响显著:在较低温度440℃时效时β基体上有针状α相析出,平均晶粒尺寸在1~2μm左右;较高温度520℃时效时,α相宽度和片层间距都增大,α相尺寸长大到3~5μm,针状α相向短棒状转化。在实验温度范围内,随着时效温度升高,合金强度降低,塑性增加。720℃固溶较低温度时效合金可获得较好的强度与韧性匹配。该合金理想的热处理工艺参数为720℃/30 min、空冷(AC)+440℃/12 h、空冷(AC),由此可获得到良好的综合性能(抗拉强度UTS=1412.8 MPa,屈服强度YS=1309.4 MPa,延伸率A=8.56%,断面收缩率Z=44.94%)。  相似文献   

10.
对喷射成形7055铝合金挤压棒材进行自由锻造及T74热处理(450℃/3 h+475℃/3 h固溶,120℃/8h+160℃/24 h时效),然后分别在室温下、以及加热到100,125,150,175和200℃下保温30 min后进行拉伸试验,待试样冷却到室温后,测定其电导率,观察其金相组织与拉伸断口形貌,研究7055铝合金锻件的室温与高温力学性能以及温度对合金组织的影响。结果表明,热处理后的7055铝合金锻件组织均匀、晶粒细小,并且具有较好的高温稳定性。合金的室温抗拉强度和屈服强度分别为632 MPa和607 MPa,伸长率为14.5%。随温度从100℃升高到150℃,合金电导率基本不变,合金的强度小幅下降;当加热温度从150℃升高到200℃时,电导率显著降低,强度大幅下降。合金的伸长率随温度升高而提高。在200℃下合金的抗拉强度和屈服强度分别为349MPa和335 MPa,伸长率为20%。在100~200℃温度范围内表现出塑韧性断裂特征。  相似文献   

11.
试验的GH706合金(/%:0.034C、16.10Cr、41.13Ni、1.64Ti、2.93Nb、0.39Al)和改进型合金(/%:0.027C、16.30Cr、1.79Ti、2.05Nb、1.21Al)由200 kg真空感应炉熔炼并重熔成150 kg ESR锭,1 180℃ 16 h均匀化处理后锻成Φ15 mm棒材,并经980℃3 h,4 K/min冷至820℃2~10 h,空冷,720℃16 h炉冷热处理。结果表明,提高合金中的Al含量和降低Nb含量可促使γ′相析出;通过调整二级固溶处理的时间可控制η相析出,使合金具有良好的强塑性,在室温抗拉强度TS 1 200 MPa的水平下使断面收缩率接近30%。改进型合金在二级固溶处理为820℃2 h时,700℃抗拉强度为908 MPa,断面收缩率达54.8%。  相似文献   

12.
将含C量0.031%、0.048%和0.055%的GH3625合金由Φ480mm铸锭锻造成Φ155 mm,轧制成Φ90 mm的棒材,后续固溶处理为加热至1 000℃,保温1 h后空冷;将C含量0.023%Φ480 mm铸锭分别锻造至Φ180 mm、Φ155 mm和Φ135 mm,将Φ155 mm的锻棒在450横列轧机上...  相似文献   

13.
P110级25MnV钢石油套管热处理工艺的优化   总被引:9,自引:0,他引:9  
通过CCT曲线测定和热处理正交试验,研究了890~930℃25~45 min淬火和570~610℃50~80min回火参数对25MnV钢(%:0.25~0.30C、1.50~1.80Mn、0.06~0.15V)245 mm×12 mm管组织和力学性能的影响。结果表明,采用910℃35 min水淬+590℃65 min回火,套管的综合力学性能最佳:屈服强度878~906MPa,抗拉强度923~963 MPa,伸长率16.6%~17.4%,满足标准要求。  相似文献   

14.
殷胜  朱红丹 《特殊钢》2019,40(1):16-18
设计和开发了屈服强度750 MPa低合金高强度集装箱用钢(/%:0.06~0.09C,0.25~0.35Si,1.60~1.80Mn, ≤0.015P,≤0.003S,0.10~0.20Mo,0.05~0.06Nb,0.09~0.11Ti,≥0.0015Ca,≥0.015Alt)。试验钢的工艺流程为260 t BOF-LF-RH-230 mm板坯连铸-热轧成2~6 mm板。通过Nb-Ti复合微合金化和Ca处理,控制精轧结束温度840~880℃,层流冷却速度≥60℃/s,卷取520~580℃,热轧钢卷的冷却速度≤10℃/h等工艺措施,热轧带钢具有良好的表面质量,组织为细晶铁素体+Nb-Ti碳氮化物,力学性能为上屈服强度760~790 MPa,抗拉强度860~910 MPa,伸长率21%~25%,满足用户要求。  相似文献   

15.
周云  杨晓伟  陈焕德  张宇 《特殊钢》2021,42(1):66-70
利用Gleeble热模拟仪、高温激光共聚焦显微镜、透射电子显微镜研究了铌含量(0.011%~0.055%)及加热温度(1 100~1 250℃)对HRB400钢20 mm板组织和性能的影响.结果表明,1 180℃加热1h时20 mm钢板中随铌含量增加,铁素体比例减少,贝氏体比例增加,屈服强度升高;铌含量0.024%时,...  相似文献   

16.
开发的20 mm低成本铌钛硼微合金化低碳钢板(/%:0.06C、0.40Si、1.60Mn、0.010P、0.005S、0.050Nb、0.012Ti、0.002B)的生产流程为130 t顶底复吹转炉-LF-RH-250 mm板坯连铸-4300轧机轧制-直接淬火-回火工艺。通过终轧≥900℃,以≥20℃/s冷却速度直接淬火,500℃回火,20 mm钢板抗拉强度Rm为855 MPa,屈服强度R0.2771 MPa,延长率A 16%,0℃冲击功Akv2 217~238J, -40℃ Akv2 137~181J。该钢的回火组织为细小的贝氏体板条,宽度为0.5~1.0μm,并有较多弥散分布的30~90 nm Nb+Ti碳氮化物析出。  相似文献   

17.
方剑  黄彦  唐应波 《特殊钢》2018,39(3):54-58
试验用Φ360 mm 27CrMnMoV钢(/%:0.27C,0.25Si,0.92Mn,1.06Cr,0.75Mo,0.009P,0.003S,0.088V)铸坯经穿孔和Φ340连轧机组热轧成Φ244.48 mm×15.11 mm无缝管。试验研究了830~950℃水淬,880℃水淬+600~680℃ 30~120 min回火,以及880℃两次水淬+620~660℃回火工艺对该钢管组织和性能的影响。一般要求V150管屈服和抗拉强度分别为1034~1241 MPa和≥1103 MPa,0℃横向冲击功≥80 J。结果表明,一次淬火+630~655℃ 60min回火时Mo和V碳化物析出产生二次硬化,其屈服和抗拉强度分别为1 034~1 150 MPa和1 103~1 225 MPa,0℃横向冲击功为80~108 J。二次淬火+635~655℃ 60 min回火工艺,循环淬火使奥氏体晶粒细化,提高强度的同时显著改善韧性,其屈服和抗拉强度分别为1 034~1 170 MPa和1 103~1 240MPa,0℃横向冲击功为80~120 J,比一次淬火+回火工艺更容易实现V150高抗挤毁套管性能的稳定性控制。  相似文献   

18.
设计和开发了压路机振轮用耐磨钢NM360(/%:0.10~0.15C,0.50~1.50Mn,≤0.001P,≤0.008S,0.20~0.50Mo,0.015~0.03Nb,0.018~0.15Ti,≥0.035Als,0.001 2~0.003 0B,≤0.008N,≤0.0003 H,≤0.003O)32 mm板...  相似文献   

19.
何贝  徐光  袁清 《特殊钢》2015,36(6):45-48
试验用12Cr2Mo1R钢(/%:0.08C,0.07Si,0.45Mn,2.16Cr,0.95Mo,0.18Ni,0.14Cu,0.015Al,0.015Sn)经电弧炉-300 mm×2 000 mm电渣重熔扁坯轧制成150 mm厚板(开轧1145℃,终轧850℃)。通过热模拟试验和温度场的有限元仿真得出12Cr2Mo1R钢的静态连续冷却转变(CCT)曲线和超厚板表面、厚度1/4处和1/2处(心部)的冷却温度曲线。热轧板经916℃ 226 min正火,698℃ 240 min回火后,钢板1/4厚度处为贝氏体+少量铁素体,1/2厚度处为贝氏体+铁素体,其力学性能-屈服强度464 MPa,抗拉强度585 MPa,伸长率22%,符合供货要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号