首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we describe a new quadrupole Fourier transform ion cyclotron resonance hybrid mass spectrometer equipped with an intermediate-pressure MALDI ion source and demonstrate its suitability for "bottom-up" proteomics. The integration of a high-speed MALDI sample stage, a quadrupole analyzer, and a FT-ICR mass spectrometer together with a novel software user interface allows this instrument to perform high-throughput proteomics experiments. A set of linearly encoded stages allows sub-second positioning of any location on a microtiter-sized target with up to 1536 samples with micrometer precision in the source focus of the ion optics. Such precise control enables internal calibration for high mass accuracy MS and MS/MS spectra using separate calibrant and analyte regions on the target plate, avoiding ion suppression effects that would result from the spiking of calibrants into the sample. An elongated open cylindrical analyzer cell with trap plates allows trapping of ions from 1000 to 5000 m/z without notable mass discrimination. The instrument is highly sensitive, detecting less than 50 amol of angiotensin II and neurotensin in a microLC MALDI MS run under standard experimental conditions. The automated tandem MS of a reversed-phase separated bovine serum albumin digest demonstrated a successful identification for 27 peptides covering 45% of the sequence. An automated tandem MS experiment of a reversed-phase separated yeast cytosolic protein digest resulted in 226 identified peptides corresponding to 111 different proteins from 799 MS/MS attempts. The benefits of accurate mass measurements for data validation for such experiments are discussed.  相似文献   

2.
We report the use of desorption electrospray ionization hybrid Fourier transform ion cyclotron resonance mass spectrometry (DESI-FT-ICR-MS) for the analysis of carbohydrates. Spectra of neat carbohydrates are presented along with their mass measurement accuracies and limits of detection. Furthermore, a comparison is made between the analyses of O-linked glycans from mucin by DESI-FT-ICR-MS and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. Finally, glycans from mucin are identified by using the high mass measurement accuracy and tandem MS capabilities afforded by the hybrid FT-ICR-MS platform.  相似文献   

3.
A new Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) has been constructed in our laboratory. The instrument employs surface-induced dissociation (SID) as an activation method for obtaining structural information on biomolecules in the gas phase. Tandem SID mass spectra can be acquired using either a continuous or a pulsed mode of operation. Collision energy of precursor ion is controlled by a dc offset of the ICR cell. This approach eliminates defocusing of the ion beam by the ion-transfer optics as a function of ion kinetic energy and constitutes a significant improvement over our previous experimental setup. Furthermore, it can be easily implemented on any FTICR mass spectrometer. Very high signal-to-noise ratios of 200-500 were obtained in single-scan SID mass spectra of model peptides with acquisition time less than 1.1 s. Reasonable SID signal was detected in single-scan spectra with total acquisition time of only 0.3 s. The high signal-to-noise ratio and the fast acquisition time point on a potential application of SID for high-throughput studies in FTICR MS.  相似文献   

4.
We report the first field desorption ionization broadband high-resolution (m/Deltam(50%) approximately 65 000) mass spectra. We have interfaced a field ionization/field desorption source to a home-built 9.4-T FT-ICR mass spectrometer. The instrumental configuration employs convenient sample introduction (in-source liquid injection) and external ion accumulation. We demonstrate the utility of this configuration by generating high-resolution positive-ion mass spectra of C(60) and a midboiling crude oil distillate. The latter contains species not accessible by common soft-ionization methods, for example, low-voltage electron ionization, electrospray ionization, and matrix-assisted laser desorption/ionization. The present work demonstrates significant advantages of FI/FD FT-ICR MS for analysis of nonpolar molecules in complex mixtures.  相似文献   

5.
Inulin is a class of fructooligosaccharide (FOS) derived from plants, which is often used as a natural food ingredient. Inulin is currently used as an additive in baked goods, dairy products, infant formula, and dietary supplements as a result of its purported health-promoting properties. The growth of health-promoting lactobacilli and bifidobacteria is supported by FOS, giving it the classification of a prebiotic; however, its ability to selectivity stimulate only beneficial bacteria has not been demonstrated. In order to better understand the role of inulin and FOS as prebiotics, matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry has been used for qualitative and quantitative analysis on bacterial growth. A method using an internal standard has been developed to quantify the consumption of FOS by Bifidobacterium longum bv. infantis using a calibration curve. Due to the differential consumption of FOS, the calibration curve was modified to include intensity components for each polymer unit in order to achieve more accurate quantitation. The method described was designed to be more rapid, precise, and robust for quantitative analysis when compared to existing methods.  相似文献   

6.
Consecutive infrared multiphoton dissociations (IRMPD) may be observed in a Fourier transform ion cyclotron resonance mass spectrometer (FTICR). This is the IRMPD equivalent of previous MS(n)() experiments using CID. This work presents a versatile technique, using a bistable shutter to gate ON and OFF a continuous-wave (CW) CO(2) laser for multiple irradiation periods of 0.1-1000 s duration. Consecutive photodissociations, up to MS(4), are demonstrated for the proton-bound dimer of diethyl ether and the resulting fragment ions. The photoproducts are formed close to the center of the FTICR cell, resulting in high product ion recovery efficiency. This differs from CID products, which are formed throughout the FTICR cell causing reisolation/detection problems. The fragmentation resulting from the use of low-intensity, CW, infrared laser radiation is shown to be much more energy selective than CID. Photodissociation of C(2)H(5)OH(2)(+) ion produces the lowest energy product ion exclusively, even though the two product channels differ only by ~5 kcal/mol. Low-energy CID, however, produces a mixture of C(2)H(5)(+) and H(3)O(+) products in the ratio of 1.3:1. Hence, the higher energy pathway (C(2)H(5)(+)) is substantially favored. The current results indicate that this IRMPD MS(n)() technique may be successfully applied to large biomolecules prepared by electrospray or MALDI.  相似文献   

7.
Electron detachment dissociation (EDD), recently introduced by Zubarev and co-workers for the dissociation of multiply charged biomolecular anions via a radical ion intermediate, has been shown to be analogous to electron capture dissociation (ECD) in several respects, including more random peptide fragmentation and retention of labile posttranslational modifications. We have previously demonstrated unique fragmentation behavior in ECD compared to vibrational excitation for oligodeoxynucleotide cations. However, that approach is limited by the poor sensitivity for oligonucleotide ionization in positive ion mode. Here, we show implementation of EDD on a commercial Fourier transform ion cyclotron resonance mass spectrometer utilizing two different configurations: a heated filament electron source and an indirectly heated hollow dispenser cathode electron source. The dispenser cathode configuration provides higher EDD efficiency and additional fragmentation channels for hexamer oligodeoxynucleotides. As in ECD, even-electron d/w ion series dominate the spectra, but we also detect numerous a/z (both even-electron and radical species), (a/z - B), c/x, (c/x - B), and (d/w - B) ions with minimal nucleobase loss from the precursor ions. In contrast to previous high-energy collision-activated dissociation (CAD) and ion trap CAD of radical oligonucleotide anions, we only observe minimum sugar cross-ring cleavage, possibly due to the short time scale of EDD, which limits secondary fragmentation. Thus, EDD provides fragmentation similar to ECD for oligodeoxynucleotides but at enhanced sensitivity. Finally, we show that noncovalent bonding in a DNA duplex can be preserved following EDD, illustrating another analogy with ECD. We believe the latter finding implies EDD has promise for characterization of nucleic acid structure and folding.  相似文献   

8.
We report here the construction and characterization of a high-power laser-induced acoustic desorption (LIAD) probe designed for Fourier transform ion cyclotron resonance mass spectrometers to facilitate analysis of nonvolatile, thermally labile compounds. This "next generation" LIAD probe offers significant improvements in sensitivity and desorption efficiency for analytes with larger molecular weights via the use of higher laser irradiances. Unlike the previous probes which utilized a power-limiting optical fiber to transmit the laser pulses through the probe, this probe employs a set of mirrors and a focusing lens. At the end of the probe, the energy from the laser pulses propagates through a thin metal foil as an acoustic wave, resulting in desorption of neutral molecules from the opposite side of the foil. Following desorption, the molecules can be ionized by electron impact or chemical ionization. Almost an order of magnitude greater power density (up to 5.0x10(9) W/cm2) is achievable on the backside of the foil with the high-power LIAD probe compared to the earlier LIAD probes (maximum power density approximately 9.0x10(8) W/cm2). The use of higher laser irradiances is demonstrated not to cause fragmentation of the analyte. The use of higher laser irradiances increases sensitivity since it results in the evaporation of a greater number of molecules per laser pulse. Measurement of the average velocities of LIAD-evaporated molecules demonstrates that higher laser irradiances do not correlate with higher velocities of the gaseous analyte molecules.  相似文献   

9.
Fourier transform ion cyclotron resonance laser microprobe mass spectrometry (FTICR LMMS) uses focused laser irradiation of solids with a spot of 5 microm and a FTICR mass analyzer for local analysis with high mass resolution. A new ion source design has been developed to improve the extraction and transfer of ions generated in an external laser microprobe source. Calculations predicted trapping of ions initially emitted with angles up to 40 degrees and 60 degrees from the surface and from a distance of 1 mm above the sample, respectively. The analytical performances of the method have been verified on two sets of test samples. First, detection of chemisorbed benzotriazole on copper, average of two monolayers, has been shown with less sample consumption than typically required in static secondary ion mass spectrometry with a time-of-flight analyzer. Second, experiments on a thermal plate for offset printing have shown the feasibility of analysis and quantification of dyes embedded in a polymer matrix.  相似文献   

10.
Laser-induced acoustic desorption (LIAD) coupled with a 3-T Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR) allows the simultaneous analysis of both the nonpolar and polar components in petroleum distillates. The LIAD/FT-ICR method was validated by examining model compounds representative of the various classes of polar and nonpolar hydrocarbons commonly found in petroleum. LIAD successfully desorbs all the compounds as intact neutral molecules into the FT-ICR. Electron ionization (EI) at low energies (10 eV) and chemical ionization using cyclopentadienyl cobalt radical cation (CpCo*+) were employed to ionize the desorbed molecules. The EI experiments lead to extensive fragmentation of many of the hydrocarbon compounds studied. However, the CpCo*+ ion ionizes all the hydrocarbon compounds by producing only pseudomolecular ions without other fragmentation, with the exception of one compound (*CH3 loss occurs). Examination of two different petroleum distillate samples revealed hundreds of compounds. The most abundant components have an even molecular weight; i.e., they are likely to contain no (or possibly an even number of) nitrogen atoms.  相似文献   

11.
A new mass spectrometric method has been developed for the analysis of low molecular weight polyethylene (PE). Laser-induced acoustic desorption (LIAD), combined with chemical ionization by the cyclopentadienyl cobalt radical cation (CpCo.+) in a Fourier transform ion cyclotron resonance mass spectrometer, produces predominantly a quasimolecular ion, (R + CpCo - 2H2).+, for each PE oligomer (R). An examination of artificial alkane mixtures revealed no mass bias for alkanes of differing molecular weights. However, the success of the LIAD/CpCo.+ CI technique depends greatly upon the LIAD sample preparation method used. Several sample preparation methods were evaluated, and pneumatically assisted spin coating was concluded to provide the best mass spectra as a result of its ability to provide uniform PE coverage on the LIAD foils. The molecular weight distributions measured for several low molecular weight PE samples (200-655) were found to be in good agreement with manufacturers' values as determined by gel permeation chromatography.  相似文献   

12.
Several experimental factors have been investigated that influence the efficiency of desorption and subsequent chemical ionization of nonvolatile, thermally labile molecules during laser-induced acoustic desorption/Fourier transform ion cyclotron resonance mass spectrometry (LIAD/FT-ICR) experiments. The experiments were performed by using two specially designed LIAD probes of different outer diameters (1/2 and 7/8 in.) and designs. Several improvements to the design of the "first generation" (1/2 in.) LIAD probe are presented. The larger diameter (7/8 in.) probe provides a larger surface area for desorption than the smaller diameter probe. Further, it was designed to desorb molecules on-axis with the magnetic field of the instrument. This is in contrast to the smaller probe for which desorption occurs 1.3 mm off-axis. This improved alignment, which provides better overlap between the desorbed molecules and trapped reagent ions, results in a substantial increase in the sensitivity of LIAD analyses. The thickness of the sample layer deposited on the irradiated metal foil and the number of laser shots fired on the backside of the foil were found to have a significant effect on the overall signal and the relative abundances of the ions formed in the experiment. Evaporation of a tetrapeptide, Val-Ala-Ala-Phe (VAAF), from Ag, Al, Au, Cu, Fe, and Ti foils, followed by protonation by protonated pyridine, revealed that the titanium foil provides the greatest signal. The importance of the laser power density was examined by desorbing a low MW polymer, polyisobutenyl succinic anhydride, at power densities ranging from 5.40 x 10(8) to 9.00 x 10(8) W/cm(2) at the backside of the foil. Higher laser power densities resulted in greater signals and an improved distribution for the higher molecular weight oligomers.  相似文献   

13.
We describe the construction and application of a 9.4-T FT-ICR mass spectrometer interfaced to a commercial field desorption ion source for high-resolution, high-mass accuracy measurements of nonpolar species. The FT-ICR MS instrument includes a liquid injection field desorption ionization source, octopole ion guides, external octopole ion trap capable of an axial potential gradient for ion ejection, capacitively coupled open cylindrical ion trap, and pulsed gas valve for ion cooling. Model compound responses with regard to various source and instrument conditions provide a basis for interpretation of broadband mass spectra of complex mixtures. As an example, we demonstrate broadband speciation of a Gulf Coast crude oil, with respect to numerous heteroatomic classes, compound types (rings plus double bonds), and carbon number distributions.  相似文献   

14.
We describe automation of liquid injection field desorption/ionization (LIFDI) for reproducible sample application, improved spectral quality, and high-throughput analyses. A commercial autosampler provides reproducible and unattended sample application. A custom-built field desorption (FD) controller allows data station or front panel control of source parameters including high-voltage limit/ramp rate, emitter heating current limit/ramp rate, and feedback control of emitter heating current based on ion current measurement. Automated LIFDI facilitates ensemble averaging of hundreds of Fourier transform ion cyclotron resonance mass spectra for increased dynamic range, mass accuracy, and S/N ratio relative to single-application FD experiments, as shown here for a South American crude oil. This configuration can be adapted to any mass spectrometer with an LIFDI probe.  相似文献   

15.
We present a novel nonresonant laser-based matrix-free atmospheric pressure ionization technique, atmospheric pressure laser-induced acoustic desorption chemical ionization (AP/LIAD-CI). The technique decouples analyte desorption from subsequent ionization by reagent ions generated from a corona discharge initiated in ambient air or in the presence of vaporized toluene as a CI dopant at room temperature. Analyte desorption is initiated by a shock wave induced in a titanium foil coated with electrosprayed sample, irradiated from the rear side by high-energy laser pulses. The technique enables facile and independent optimization of the analyte desorption, ionization, and sampling events, for coupling to any mass analyzer with an AP interface. Moreover, the generated analyte ions are efficiently thermalized by collisions with atmospheric gases, thereby reducing fragmentation. We have coupled AP/LIAD-CI to ultrahigh-resolution FT-ICR MS to generate predominantly [M + H](+) or M(+?) ions to resolve and identify thousands of elemental compositions from organic mixtures as complex as petroleum crude oil distillates. Finally, we have optimized the AP/LIAD CI process and investigated ionization mechanisms by systematic variation of placement of the sample, placement of the corona discharge needle, discharge current, gas flow rate, and inclusion of toluene as a dopant.  相似文献   

16.
The ultrahigh resolution and sensitivity of electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry have for the first time been exploited for the characterization of highly sialylated glycoproteins, using human alpha-1-acid glycoprotein as the model compound. An alternative approach to the widely used high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization (MALDI) assays is described. This new method does not require any enzymatic or chemical digestion (removal of sialyl groups or deglycosylation), chemical derivatization (introduction of chromophore groups), or preliminary chromatographic separation (HPLC or electrophoresis). Following ESI and accumulation of ions in a hexapole ion guide, ions are injected into the ICR cell. A selected mass window from the overall ion population is isolated and axialized prior to detection. After acquisition and Fourier transform of the transient signal the resulted spectrum is evaluated in order to determine the charge state of the detected ions and the isotope pattern of the measured protein glycoform. The presence of ions from the same glycoform with different charge states was confirmed. The advantages and limitations of the technique are discussed. Future prospects and possible applications are indicated.  相似文献   

17.
Here we report the design, fabrication, and operation of a polymer-based microchip device interfaced to a nanoelectrospray ionization source and a Fourier transform ion cyclotron resonance mass spectrometer. The poly(methyl methacrylate) micromachined device was fabricated using X-ray lithography to produce a network of channels with high aspect ratios. Fabrication of high aspect ratio channels allows for zero dead volume interfaces between the microchip platform and the nanoelectrospray capillary interface. The performance of this device was evaluated with standard peptide and protein samples. High-quality mass spectral data from peptide and proteins (and mixtures thereof) were obtained without any interfering chemical noise from the polymer or the developers and plasticizers used in the fabrication process. Sample cross-contamination is not a problem using this polymer-based microchip device as demonstrated by the sequential analysis of several proteins. The nanoelectrospray source was operated at flow rates from 20 to 100 nL/min using pressure-driven flow, and uninterrupted operation for several hours is demonstrated without any noticeable signal degradation. The ability to fabricate multiple devices using injection molding or hot-embossing techniques of polymers provides a lower cost alternative to silica-based devices currently utilized with mass spectrometry.  相似文献   

18.
A new high-pressure matrix-assisted laser desorption/ionization (HP-MALDI) source for FTMS has recently been described (O'Connor et al. J. Am. Soc. Mass Spectrom., in press). Improvements to the source design, including the incorporation of a new high-pressure gas channel plate, resulted in ions devoid of metastable fragmentation and also in increased sensitivity compared to the HP-MALDI prototype source design. The focus of this contribution is the evaluation of the current HP-MALDI FTMS configuration. The use of nonconductive sample surfaces, such as Parafilm and Teflon, was explored, and spectra from 30 amol of peptide applied to these surfaces were routinely obtained. In addition, the current limit of detection for this configuration is demonstrated to be 300 zmol for the phosphopeptide RRREEE(pS)EEEAA using multishot accumulation of the ions from 15 laser shots in the hexapole and 1 scan. In addition, the performance of the new HP-MALDI FTMS configuration and its potential application for high-throughput proteomics analyses are discussed.  相似文献   

19.
A voltage-assisted venturi device modeled after an industrial air amplifier was used to improve the ion transmission efficiency of a 16.2 kDa oligonucleotide and a 53-mer PCR product in the high-pressure region between an electrospray ionization (ESI) emitter and the sampling orifices of two Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR-MS). The venturi device increased the total ion abundance of the oligonucleotide and the PCR product by more than 6-fold relative to the best achievable signal without the device. Furthermore, the average charge states of the oligonucleotide and PCR product shifted from 12.5- to 14.5- and 10.9- to 12.6-, respectively, with the addition of the venturi device. Specific to FT-ICR mass spectrometry, this increase in the charge state directly translates to an increase in theoretical mass resolving power (>10000 full width half-maximum for the results presented here at 7 T). Adduction was still observed while using the device, suggesting that it is "soft" relative to other high-pressure ion focusing methods.  相似文献   

20.
The advent of ultra-high-resolution mass spectrometry has revolutionized the ability of aquatic biogeochemists to examine molecular-level components of complex mixtures of organic matter. The ability to accurately assess the chemical composition, elemental formulas, or both of detected compounds is critical to these studies. Here we build on previous work that uses functional group relationships between compounds to extend elemental formulas of low molecular weight compounds to those of higher molecular weight. We propose an automated compound identification algorithm (CIA) for the analysis of ultra-high-resolution mass spectra of natural organic matter acquired by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. This approach is benchmarked with synthetic data sets of compounds cited in the literature. The sensitivity of our results is examined for different sources of error, and CIA is applied to two previously published data sets. We find that CIA works well for data sets with high mass accuracy (<1 ppm) and can accurately determine the elemental formulas for >95% of all compounds composed of C, H, O, and N. Data with lower mass accuracy must be accompanied with additional knowledge of chemical structure, composition, or both in order to yield accurate elemental formulas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号