首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetragonal Gd1−x Pr x BaSrCu3O7−δ (GdPr1113) polycrystalline high-temperature superconducting ceramic samples have been synthesized by the standard solid-state reaction process with different calcination and sintering temperatures and characterized by XRD and SEM. The optimum synthesis temperatures for obtaining single phase varied with Pr doping. Higher temperatures were necessary to obtain single phase for x ≥ 0.3. It was found that higher synthesis temperatures improved the electrical characteristics of these materials. The effects of different calcination and sintering temperatures on the anomalous hump in the ρ(T) curves observed at about 80 K is investigated. The percentage of the phase causing the anomaly decreases with the increase of the synthesis temperatures. PACS: 74.72.Bk, 74.62.Bf, 74.25.Fy  相似文献   

2.
The compounds CaREBaCu3O7−y (RE=La and Sm) are tetragonal at room temperature withT c between 60 and 70 K. The single-phase compounds were prepared by solid-state reaction. The resistivity was measured by a four-probe technique in a continuous flow cryostat with the temperature being controlled to an accuracy of 10 mK. The resistivity vs temperature showed a break in slope around 180 K in CaLaBaCu3O7−y and around 220 K in CaSmBaCu3O7−y . The results were analysed for fluctuation conductivity from 180 K downwards. A plot of dρ/dT vsT showed a sharp peak atT m =69·69 K for La compound and 66·00 K for the Sm compound. Detailed analysis of the resistivity in the regionT on to 180 K was carried out using the procedure due to Veira and Vidal. The results are discussed in this paper.  相似文献   

3.
Fluctuation induced conductivity of Ca substitution at R sites of R1−x Ca x : 123 superconductors with various x and R is investigated. This work is done by using the reported data of Sedky et al. (Phys. Rev. B 58(18):12495, 1998). The logarithmic plots of Δσ and reduced temperature € reveal three different exponents corresponding to two different crossover temperatures. The first exponent at ln € (−1≥ln €≥−2) and its values are close to 1, for which order parameter dimensionalities (OPD) are two dimensional (2D). The second exponent at ln € (−2≥ln €≥−3.5) and its values are close to 2, for which OPD are neither two dimensional (2D) nor three dimensional (3D). The third exponent at ln € (−3.5≥ln €≥−8) and its values are close to 0.5, for which OPD are three dimensional (3D). The different values of the interlayer coupling are also calculated in the normal and mean field regions, respectively. Our results are discussed in terms of oxygen disorder and system anisotropy produced by Ca substitution in R 1−x Ca x : 123 systems.  相似文献   

4.
    
Within the two-band model of superconductivity, we study the dependence of the critical temperature T c and of the isotope exponent α in the proximity to an electronic topological transition (ETT). The ETT is associated with a 3D–2D crossover of the Fermi surface of one of the two bands: the σ subband of the diborides. Our results agree with the observed dependence of T c on Mg content in A (A = Al or Sc), where an enhancement of T c can be interpreted as due to the proximity to a ‘shape resonance.’ Moreover we have calculated a possible variation of the isotope effect on the superconducting critical temperature by tuning the chemical potential.  相似文献   

5.
The ac susceptibility data was employed to extract the temperature dependence of the critical current density, J c(T), as well as the variation of flux-creep exponent n(T,H ac) with temperature and ac field amplitude in bulk samples of polycrystalline magnetic superconductor RuSr2GdCu2O8 (Ru-1212). The critical state models and the collective flux-creep approximation model were successfully accounted to describe such behavior below the transition temperature. The calculated values of n(T,H) are well fitted to a power law of the following form: n(T,H)=n 0(H)T s(H), where s is field dependent exponent whose values varied from −2.4, −1.01 for field amplitudes ranging from 0.5 G and 3.8 G. The power law describing the frequency dependence of χ′ is found to be consistent with the results of the current-dependent effective activation energy of the form U(J)=U 0ln (J c/J). Additionally, the dependence of the current density is found to scale according as: J c(T)=J c0(1−T/T c) n , where the exponent n values varied from 1.05 to 1.25. Such dependence is an indication of intergrain coupling that could be ascribed in terms of superconductor–insulator–superconductor junctions. The derived temperature dependence of J c(T) is in good agreement with the data obtained from the measurements using the traditional “loss-maximum” approach. Furthermore, the flux-creep effect increased with increasing both ac fields and temperatures except at about 15–25 K below the onset of T c, where a slowing down of the flux creep was observed.  相似文献   

6.
Low-field (H<40 G) magnetoresistance measurements have been made on Bi1·6Pb0·4Sr2Ca2Cu3O10 polycrystals at several temperatures between 80 and 105 K. Considerable hysteresis in ρ(H) is found in a zero-field-cooled sample when the applied field is increased from 0 to a maximum value and then lowered back to 0 at all temperatures. The observation of hysteresis is taken as an evidence for field trapping in the grains. We show that the hysteresis in ρ(H) occurs for applied fields much lower than that at whichdρ(H)/dH exhibits a discontinuity. In addition, we find that when the applied magnetic field (H a) is lowered from a maximum field, the effective intergranular field,H eff, becomes zero forH c>0, which gives rise to a minimum in ρ(H).  相似文献   

7.
The temperature and Zn concentration dependence of the electrical resistivity, specific heat, magnetic susceptibility, and electron paramagnetic resonance (EPR) spectra of YBa2(Cu1–x Zn x )3O7–y withy0.1 has been measured forx0.16. In addition, the temperature and field dependence of the magnetization has been measured for 2<T<300K and 0<H<9.0T, along with the temperature and quasihydrostatic pressure dependence of the electrical resistivity for selected samples for 0<P<13 GPa. The substitution of Zn for Cu in YBa2Cu3O7–y causes a rapid and nearly linear depression of the superconducting transition temperature,T c , withT c going to 0 K forx 0.10. YBa2(Cu1–x Zn x )3O7–y retains the YBa2Cu3O7-y orthorhombic structure forx0.16 for both the superconducting and nonsuperconducting samples. Initially, the unit cell volume increases nearly linearly with Zn content; however, an abrupt change occurs in the vicinityx=0.8–0.10. Forx<0.10, the temperature dependence of the electrical resistivity,(T), is metallic-like (d/dT>0) and increases gradually with increasing Zn content. However, forx 0.10,(T) becomes semiconductor-like, with a very rapid increase of the resistivity with increasingx. The electrical resistivity, magnetic susceptibility, EPR spectra, and specific heat all indicate that thed-holes associated with the Cu ions become localized in the nonsuperconducting phase,x>-0.10.  相似文献   

8.
A new Cu0.5Tl0.5Ba2Ca3Cu4−y Zn y O12−δ (y=0, 1.0, 2.0, 3.0, 3.5) superconductor with four ZnO2 planes is reported. The structure of the material remains tetragonal for all Zn doping concentration. The substitution of Zn at CuO2 planar site was carried out following Cu0.5Tl0.5Ba2Ca3Cu4−y Zn y O12−δ (y=0, 1.0, 2.0, 3.0, 3.5) formula. Contrary to all previous studies of Zn doping in all copper oxide high temperature superconductors, the zero resistivity critical temperature T c(R=0), critical current density and quantity of diamagnetism increase with increased Zn concentration. The onset temperature of superconductivity in these samples was observed at 128 K and T c(R=0) at 122 K for y=3.5. The volume of the unit cell observed through X-ray diffraction scan is found to decrease with increase Zn doping; promoting an increase in Fermi vector K F and effective density of states which results in enhanced superconductivity parameters. The synthesis of Cu0.5Tl0.5Ba2Ca3Cu4−y Zn y O12−δ material by this method is highly reproducible.   相似文献   

9.
Influence of sintering time and quenching in Bi2 −x Pb x Ca2Sr2Cu3O y (x=0.0, 0.1, 0.2, 0.25, 0.3 and 0.4) samples have been studied by resistance and XRD measurements. In samples sintered at 850°C for 4 days,T c(0) increases with Pb concentration.T c(0) increased from 81 K forx=0.0 to 109 K inx=0.30 sample and then decreased. Increasing the sintering time to 10 days decreased theT c Quenching further decreased theT c(0). From X-ray diffraction patterns, the intensity peaks of low and highT c phases have been measured. The addition of Pb promotes highT c-phase. Sintering time, slow cooling and rapid quenching studies show that there is an optimum sintering time and cooling rate to produce a highT c-phase.  相似文献   

10.
The critical temperature T c in the universal phase diagram of cuprate superconductors is a function of two variables: the hole-doping δ and a material dependent parameter. Here we focus on the behavior of T c,max as a function of the material dependent parameter (MDP) at the optimum hole doping. We have discussed the correlation between (1) the average Cu—O (planar) distance, or the strain of the Cu—O bond, (2) the nearest-neighbor hopping t′ and (3) the Lifshitz parameter z. These Lifshitz parameter z = μδ = 0.16E vHs which are all material dependent parameters, where μδ = 0.16 is the chemical potential at optimum doping and EvHs is the energy of the Van Hove singularity, defines the proximity to the Fermi surface topological transition from electron-like to hole-like. The results show that the striped phases occur for z < 0, the highest T c,max for and the drop of T c,max for z > 75 meV.  相似文献   

11.
Porous Si3N4 ceramics were successfully synthesized using cheaper talc and clay as sintering additives by pressureless sintering technology and the microstructure and mechanical properties of the ceramics were also investigated. The results indicated that the ceramics consisted of elongated β-Si3N4 and small Si2N2O grains. Fibrous β-Si3N4 grains developed in the porous microstructure, and the grain morphology and size were affected by different sintering conditions. Adding 20% talc and clay sintered at 1700°C for 2 h, the porous Si3N4 ceramics were obtained with excellent properties. The final mechanical properties of the Si3N4 ceramics were as follows: porosity, P 0 = 45·39%; density, ρ = 1·663·g·cm−3; flexural strength, σ b (average) = 131·59 MPa; Weibull modulus, m = 16·20.  相似文献   

12.
The effect of Co substitution on the crystal structure and electrical transport properties of La0.85Ag0.15Mn1−y Co y O3 compounds (0≥y≤0.50) has been studied. Structural transition from rhombohedral to orthorhombic symmetry has been observed with Co doping. The lattice parameters are found to increase with doping up to y=0.20, then it decreases. It is explained on the basis of transition from high spin state to low spin state of Co ions with increase in doping beyond y=0.20. Ferromagnetic (FM) metallic behavior with colossal magneto-resistivity has been observed up to y=0.10. However, for y≥0.15 compounds, the temperature dependence of resistivity ρ(T) follows semiconducting behavior. The electrical resistivity in the metallic region could be explained based on electron–electron and electron–magnon scattering mechanisms. The data in the semiconducting region could be explained based on the variable range hopping model for y=0.2 and adiabatic small polaron hopping model for y≥0.3.   相似文献   

13.
New Pb-based layered cuprates with the 1222 structure have been synthesized in the (Pb0.5B0.5)Sr2 (RE2−xy Ce x Sr y )Cu2O z (RE = Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Y) systems. The almost-single-phase samples in the systems can be obtained for a nominal composition of x=0.7 and y=0.1. The crystal structure of the samples has a tetragonal symmetry, the lattice parameters of a and c are increasing with increasing the ionic radius of RE element. Despite treatment under high O2 pressure of 100 atm, the samples are semiconductors with the transport process characteristic of three-dimensional variable range hopping conduction.  相似文献   

14.
EnhancedT c in calcium-free Tl compounds of the series Tl m Ba2Ca n−1Cu n O x (2201) has been reported. Three different starting compositions (2201, 1201 and 2202) were studied extensively with varying conditions of preparation. Under optimized conditions (sintering temperature 970°C and duration 3–10 min) the highestT c(onset) ranges from 103 K to ∼ 115 K andT c (zero) ∼ 95 K was found. XRD studies showed the transformation of all the three nominal compositions into 2201 phase with differentT cs.  相似文献   

15.
We have investigated effects of the lanthanide element Ln and the composition changes on the superconducting transition temperatureT c in the Ru-1232 system, RuSr2(Gd1−x Ln x Ce1.8Sr0.2)Cu2O z (Ln = Sm, Dy, and Ho). At first, in the case of the samples with Ln = Sm among almost the single 1232 phase samples, the values of the superconducting onset temperatureT co are almost the same forx=0.00−0.15, and each of the lattice parametersa andc is almost constant. While, in each of the cases of the samples with Ln = Dy and Ho, the sample withx=0.05 shows the maximum values for both the superconducting onset temperatureT co and the zero resistivity temperatureT cz. Especially for the sample with Ln = Dy, the values ofT co andT cz are 18.5 and 6.5 K, respectively. These are higher than those of the mother sample of RuSr2(GdCe1.8Sr0.2)Cu2O z . Moreover, from variations ofT co, lattice parameters ofa andc in the RuSr2(Gd1−x Dy x Ce1.8Sr0.2)Cu2O z system as a function of Dy contentx, the relationship between the superconducting transition temperature and the lattice parameters in the present system are investigated.  相似文献   

16.
Here we present a reviewed phase diagram of the high-T c superconducting YBa2Cu3O6+ x compound, finely mapped in the strongly underdoped region (0 < x < 0.5), from the pure antiferromagnetic state to the superconducting regime. The Neèl and spin freezing temperatures have been measured by μSR experiments while the hole density per Cu atom in the CuO2 planes has been determined from the resistive T c and from Seebeck coefficients at 290 K. The phase diagram is discussed in comparison to those of La2− x Sr x CuO4 and Y1− x Ca x Ba2Cu3O6 cuprate systems.  相似文献   

17.
The insulating and metallic behavior of the grain-boundary weak links has been studied in thallium rich and the samples with small amount of thallium in the charge reservoir layer of Cu1−x Tl x Ba2Ca3Cu4O12−δ superconductor thin films. The influence of the nature of grain boundaries on the inter-granular critical current density (J c) has also been investigated. From the power law dependence of H ac∼(1−T p/T c) n , it was observed that n=1 gives a best fit for the J c of thallium rich samples and n=2 provides a best fit for the J c of the samples with small amount of thallium. The polycrystalline thin film samples showing the power law dependence of J c as n=1 make superconductor-insulator-superconductor (SIS) type while the samples with n=2 follow superconductor-normal metal-superconductor (SNS) types of Josephson junctions. The insulating grain boundaries decrease the inter-granular Josephson coupling and hence the transport properties are suppressed.   相似文献   

18.
The present paper deals with the theoretical investigation of temperature-dependent resistivity of the perovskite manganites La0.78Pb0.22MnO3-δ within the framework of the classical electron–phonon model of resistivity, i.e., the Bloch–Gruneisen model. Due to inherent acoustic (low-frequency) phonons (ωac) as well as high-frequency optical phonons (ωop), the contributions to the electron–phonon resistivity have first been estimated. At low temperatures the acoustic phonons of the oxygen-breathing mode yield a relatively larger contribution to the resistivity as compared to the contribution of optical phonons. Furthermore, the nature of phonons changes around T = 215 K exhibiting a crossover from an acoustic to optical phonon regime with elevated temperature. The contribution to resistivity estimated by considering both phonons, i.e., ωac and ωop, when subtracted from experimental data, infers a T4.5 temperature dependence over most of the temperature range. Deduced T4.5 temperature dependence of ρdiff = [ρexp − {ρ0 + ρe-ph( = ρac + ρop)}] is justified in terms of electron–magnon scattering within the double exchange (DE) process. Within the proposed scheme, the present numerical analysis of temperature dependent resistivity shows similar results as those revealed by experiments  相似文献   

19.
Electrical resistivities of two icosahedral (I) Al-Pd-Re alloys have been measured between room temperature and mK temperatures. One quasicrystalline (QC) polygrain Al-Pd-Re sample exhibited insulating behavior in its resistivities, increasing by a factor of r=R(4 K)/R(300 K)=7.76; its room temperature resistivity was 9,890 μΩ cm. A “phenomenological” expression fitted the conductivity data well between 300 K to 0.5 K. Below 0.4 K a crossover to an activated variable-range hopping law was observed. Low temperature magnetoresistance ratio data and fits using the wave function shrinkage theory are presented. A second QC Al-Pd-Re sample had a small resistance temperature ratio r=2.12. The room temperature resistivity was extremely large, ρ(300 K)≈40,980 μΩ cm. Its conductivity could be described well using a simple temperature power law between 300 K to 20 K. Below 20 K there was a crossover to a new behavior. Below 1 K, the conductivity could be fitted using a very weakly insulating power law where σ(T)≈11.37T 0.032 in (Ω cm)−1, suggesting that this sample is located just below the metal-insulator transition. The magnetoconductivity data could not be fitted successfully using the 3D weak localization (WL) theory and inserting into it physical and realistic fitting magnitudes for the inelastic magnetic field B in.   相似文献   

20.
The temperature dependences of the resistivity R(T) and the thermoelectric power α(itT) under different hydrostatic pressuresP for the system La{2-x}BavCuO4, 0.11 ≤ x < -1.6, are reported and interpreted as evidence for strong electron coupling to oxygen vibrations along the CuO-Cu bond axes of the CuO2 sheets. The sensitivity of the transport properties to the bending Φ of the (180‡-Φ) Cu-O-Cu bond angle and their insensitivity to long-range magnetic order indicate that the segregation into hole-rich and magnetic stripe domains is driven primarily by electron-lattice interactions and not by electron-electron interactions alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号