首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Liao YC  Sun H  Weeks BL 《Scanning》2012,34(3):200-205
Thermal stability of self-assembled monolayers (SAMs) is important for applications in various surface science applications. As a model material, 16-mercaptohexadecanoic acid (MHA) on template stripped gold surfaces was investigated to determine the effect of temperature on the change of lateral force signal using atomic force microscopy (AFM). Friction force signals were obtained at various temperatures in order to determine whether it was possible to correlate the friction signal with desorption of the thiol molecule from the surface. Samples were heated for up to 10 h ranging from 40 to 80 °C in air and scanned every hour. A kinetic model was introduced to correlate the lateral force signal to the activation energy of desorption of the SAM from gold surface with heating. The activation energy of the detachment using this technique is 25.4 kcal/mol, which is consistent with other more complex techniques.  相似文献   

2.
3.
Feng SC  Vorburger TV  Joung CB  Dixson RG  Fu J  Ma L 《Scanning》2008,30(1):47-55
It is difficult to predict the measurement bias arising from the compliance of the atomic force microscope (AFM) probe. The issue becomes particularly important in this situation where nanometer uncertainties are sought for measurements with dimensional probes composed of flexible carbon nanotubes mounted on AFM cantilevers. We have developed a finite element model for simulating the mechanical behavior of AFM cantilevers with carbon nanotubes attached. Spring constants of both the nanotube and cantilever in two directions are calculated using the finite element method with known Young's moduli of both silicon and multiwall nanotube as input data. Compliance of the nanotube-attached AFM probe tip may be calculated from the set of spring constants. This paper presents static models that together provide a basis to estimate uncertainties in linewidth measurement using nanotubes. In particular, the interaction between a multiwall nanotube tip and a silicon sample is modeled using the Lennard-Jones theory. Snap-in and snap-out of the probe tip in a scanning mode are calculated by integrating the compliance of the probe and the sample-tip interacting force model. Cantilever and probe tip deflections and points of contact are derived for both horizontal scanning of a plateau and vertically scanning of a wall. The finite element method and the Lennard-Jones model provide a means to analyze the interaction of the probe and sample and measurement uncertainty, including actual deflection and the gap between the probe tip and the measured sample surface.  相似文献   

4.
5.
6.
Mesquida P  Stemmer A 《Scanning》2002,24(3):117-120
We report the guided self-assembly of nanoparticles to geometrically well-defined charge patterns written on a dielectric surface with the conductive tip of an atomic force microscope (AFM). Charges are deposited in 30-90-nm thick fluorocarbon layers by applying voltage pulses to the conductive AFM tip. The samples are being developed by dipping them into an organic suspension of silica nanoparticles. Coulomb forces draw the nanoparticles to the charge patterns. With this simple process, we achieve a resolution of about 800 nm.  相似文献   

7.
Recently, the manipulation of a single cell has been receiving much attention in transgenesis, in-vitro fertilization, individual cell based diagnosis, and pharmaceutical applications. As these techniques require precise injection and manipulation of cells, issues related to penetration force arise. In this work the penetration force of living cell was studied using an atomic force microscope (AFM). L929, HeLa, 4T1, and TA3 HA II cells were used for the experiments. The results showed that the penetration force was in the range of 2∼22 nN. It was also found that location of cell penetration and stiffness of the AFM cantilever affected the penetration force significantly. Furthermore, double penetration events could be detected, due to the multi-membrane layers of the cell. The findings of this work are expected to aid in the development of precision micro-medical instruments for cell manipulation and treatment. This paper was presented at the 9th Asian International Conference on Fluid Machinery (AICFM9), Jeju, Korea, October 16–19, 2007.recommended for publication in revised form by Associate Editor Keum-Sik Hong Eun-Young Kwon received her B.S. and M.S degrees in Mechanical Engineering from Yonsei University, Korea, in 2005 and 2007, respectively. Ms. Kwon is currently an Engineer at Digital Printing Division of Samsung Electronics. Her research interests include biotribology, tribology, and electrophotography. Young-Tae Kim received his B.S. in Automotive Engineering from Seoul National University of Technology, Korea, in 2003. He then received his M.S. degree from Yonsei University in Seoul, Korea in 2005. Mr. Kim is currently a Ph. D. candidate at the Graduate School of Mechanical Engineering at Yonsei University in Seoul, Korea. His research interests include biotribology, tribology, and biomechanics. Dae-Eun Kim received his B.S. in Mechanical Engineering from Tufts University, USA, in 1984. He then received his M.S. and Ph.D. degrees from M.I.T. in 1986 and 1991, respectively. Dr. Kim is currently a Professor at the School of Mechanical Engi-neering at Yonsei University in Seoul, Korea. His research interests include tribology, functional surfaces, and micromachining.  相似文献   

8.
Huang JC  Li CL  Lee JW 《Scanning》2012,34(1):51-59
In this study, nanoscratching and nanomachining were conducted using an atomic force microscope (AFM) equipped with a doped diamond‐coated probe (DDESP‐10; VEECO) to evaluate the fabrication of nanopatterns on hard, Cr2N/Cu multilayer thin films. The influence of normal force, scratch speed, and repeated scratches on the properties of hard multilayer thin films was also investigated. The nanoscratch experiments led researchers to establish a probe preparation and selection criteria (PPS criteria) to enhance the stability and accuracy of machining hard materials. Experimental results indicate that the depth of grooves produced by nanoscratching increased with an increase in normal force, while an increase in the number of scratches in a single location increased the groove depth but decreased friction. Therelationships among normal force and groove depth more closely resembled a logarithmic form than other mathematical models, as did the relationship between repeated scratching and its effect on groove depth and friction. The influence of scratch speed on friction was divided into two ranges. Between 0.1 and 2 µm/s, friction decreased logarithmically with an increase in scratch speed; however, when the speed exceeded 2 µm/s, the friction appeared stable. In this study, multilayered coatings were successfully machined, demonstrating considerable promise for the fabrication of nanopatterns in multilayered coatings at the nanoscale. SCANNING 34: 51–59, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
We present a fibre-top probe fabricated by carving a tipped cantilever on an optical fibre, with the tip machined in correspondence of the fibre core. When approached to an optical prism illuminated under total internal reflection conditions, the tip of the cantilever detects the optical tunnelling signal, while the light coupled from the opposite end of the fibre measures the deflection of the cantilever. Our results suggest that fibre-top technology can be used for the development of a new generation of hybrid probes that can combine atomic force microscopy with scanning near field optical microscopy.  相似文献   

10.
Liu H  Bhushan B 《Ultramicroscopy》2004,100(3-4):391-412
Texas Instruments’ digital micromirror device (DMD) comprises an array of fast digital micromirrors, monolithically integrated onto and controlled by an underlying silicon memory chip. The DMD is one of the few success stories in the emerging field of MEMS. In this study, an atomic force microscope (AFM) has been used to characterize the nanotribological properties of the elements of the DMD. An AFM methodology was developed to identify and remove micromirrors of interest. The surface roughness, adhesion, friction, and stiffness properties of the DMD elements were studied. The influence of relative humidity and temperature on the behavior of the DMD element surfaces was also investigated. Potential mechanisms for wear and stiction are discussed in light of the findings.  相似文献   

11.
Wu Y  Hu Y  Cai J  Ma S  Wang X  Chen Y 《Scanning》2008,30(5):426-432
Atomic force microscopy (AFM) has been widely applied in cellular morphology study. However, morphological information including volume and roughness obtained by AFM are usually affected by different kinds of factors, which include the microscopic system itself, imaging mode, or external factors such as AFM probe or tip condition. In this study, based on red blood cell model, the dependence of cellular morphology, volume, and roughness on several parameters of the imaging was evaluated and, furthermore, a general rule and resolution for trustful analysis had been suggested. In addition, the potential effects that resulted from sample itself had also been analyzed based on adhesive force analysis. The results indicated that the scanning range and the imaging mode affect cellular volume and roughness, and the distorted images should be ascribed to blunt tip, contaminated tip, and the shape of tip. The analysis of morphological distortion during AFM investigation of cells provides a reference for researchers using AFM.  相似文献   

12.
张冬仙  黄峰 《光学仪器》2001,23(2):14-17
提出原子力显微镜 (AFM)的新设计 ,讨论卧式 AFM的工作原理及其性能特点 ,简要介绍 AFM的控制电路系统及其图像扫描和图像处理软件系统 ,给出 AFM扫描获得的部分样品的图像结果。  相似文献   

13.
This paper describes the use of a standard stereo-pair image display method for presenting the three-dimensional relief information found in atomic force microscope (AFM) images. The method makes use of commercially available image processing software packages. The techniques are illustrated on AFM images of the cuticle structure of a human hair fibre.  相似文献   

14.
Tiryaki VM  Khan AA  Ayres VM 《Scanning》2012,34(5):316-324
Summary: A diagnostic approach is developed and implemented that provides clear feature definition in atomic force microscopy (AFM) images of neural cells on nanofibrillar tissue scaffolds. Because the cellular edges and processes are on the same order as the background nanofibers, this imaging situation presents a feature definition problem. The diagnostic approach is based on analysis of discrete Fourier transforms of standard AFM section measurements. The diagnostic conclusion that the combination of dynamic range enhancement with low‐frequency component suppression enhances feature definition is shown to be correct and to lead to clear‐featured images that could change previously held assumptions about the cell–cell interactions present. Clear feature definition of cells on scaffolds extends the usefulness of AFM imaging for use in regenerative medicine. SCANNING 34: 316–324, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
动态原子力显微镜(atomic force microscope,AFM)是通过检测悬臂谐振状态的变化来对物体表面形貌进行测量的。通过对谐振状态的三种因素即振幅、相位、频率的检测,动态AFM可以分为三种工作模式,即振幅反馈、相位反馈与频率反馈模式,这三种反馈模式有着不同的扫描特点。基于硅悬臂具有高阶谐振的特性,动态原子力显微镜可以在悬臂工作于高阶谐振状态时对物体进行扫描。综合上述工作模式研制了一套多模态动态AFM,可以在三种反馈模式、不同阶谐振状态下对物体进行扫描测量。利用该系统在不同反馈模式、不同阶谐振状态下进行了扫描测试,结果显示,系统在各模式下具有亚纳米分辨力,其中在相位反馈模式,悬臂二阶谐振时可达到最优灵敏度与分辨力,分别为17.5V/μm和0.29nm,在最优灵敏度与分辨力状态下对光栅试样进行了三维扫描,得到光栅的三维形貌图。  相似文献   

16.
张虎  张冬仙  黄峰 《光学仪器》2003,25(3):7-10
简要介绍了原子力显微镜的工作原理 ,着重分析了液相探头的设计 ,并利用该探头进行了液相环境的样品表面形貌测量 ,给出了测量的图像。实验表明 ,该液相探头具有良好的液态环境扫描性能 ,图像稳定 ,分辨力高。  相似文献   

17.
The objective of this study is to investigate effects of etchant on dentin surface as a function of etching time by atomic force microscopy (AFM). Twenty intact, freshly extracted noncarious human teeth were used to make 40 dentin discs and the discs were randomly divided into 4 groups. A commercial etchant was applied on these dentin discs. The main component of the etchant is 32% phosphoric acid and the etching time for the four dentin disc groups was 0, 20, 40, and 60 s. The AFM results show progressive changes of the surface morphology as the etching time increases. Significant difference of average roughness (Ra) exists in the dentin surface among all four groups (p<0.05). The statistic difference of diameters of dentinal tubule orifice (Dt) exists between the control group and all other groups (p<0.05), whereas the Dts for the 40‐s group and 60‐s group are not statistically different (p>0.05). Our results showed that acid treatment has a significant influence on dentin demineralization and the effective etching time of the dentin surface appears to be 60 s. We provide a new nanoscale insight into the dentin surface treatment and this can help us to select the optimal etching time in clinic. SCANNING 31: 28–34, 2009. © 2009 Wiley Periodicals, Inc.  相似文献   

18.
The sharpness of atomic force microscope (AFM) tips is essential for acquiring high quality AFM images. However, AFM tips would easily get contaminated during scanning and storage at ambient condition, which influences image resolution and causes image distortion. Replacing the probe frequently is a solution, but uneconomical. To solve this problem, several tip cleaning methods have been proposed but there is space for further improvement. Therefore, this article developed a method of tip cleaning by using a one‐dimensional grating (600 lines/mm) as a micro‐washboard to “wash” contaminated tips. We demonstrate that the contaminants can be scrubbed away by rapidly scanning such micro‐washboard against the tip in the aids of Z‐dithering (10–20 Hz) exerted on the washboard. This method is highly efficient and proved to be superior to traditional ones. Experiments show that AFM images acquired with “washed” tips have higher resolution and less distortion compared with images acquired using contaminated tips, even comparable to those scanned by new ones. Microsc. Res. Tech. 76:1131–1134, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
This paper presents a simple and reliable technique for nanometer-scale layer modification of a polycarbonate (PC) surface using an atomic force microscope (AFM). The AFM tip, coated with amorphous carbon was made to oscillate vertically at its resonance frequency. With tip oscillating in tapping mode, it scan-scratched the PC surface to make the desired modification. This action carved the PC surface without distorting it. The bottom of the depression made by scan-scratching with the oscillating tip was obviously flat in comparison with the area scan-scratched without tip oscillation in contact mode. The depth of the scan-scratched depression was controlled by adjusting the amplitude of oscillation and the scanning speed of scratching. This technique is very interesting for microtribology and surface modification.  相似文献   

20.
A modified tapping mode of the atomic force microscope (AFM) was introduced for manipulation, dissection, and lithography. By sufficiently decreasing the amplitude of AFM tip in the normal tapping mode and adjusting the setpoint, the tip-sample interaction can be efficiently controlled. This modified tapping mode has some characteristics of the AFM contact mode and can be used to manipulate nanoparticles, dissect biomolecules, and make lithographs on various surfaces. This method did not need any additional equipment and it can be applied to any AFM system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号