首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

The United States Harmful Algal Bloom and Hypoxia Research Control Act of 2014 identified the need for forecasting and monitoring harmful algal blooms (HAB) in lakes, reservoirs, and estuaries across the nation. Temperature is a driver in HAB forecasting models that affects both HAB growth rates and toxin production. Therefore, temperature data derived from the U.S. Geological Survey Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper Plus thermal band products were validated across 35 lakes and reservoirs, and 24 estuaries. In situ data from the Water Quality Portal (WQP) were used for validation. The WQP serves data collected by state, federal, and tribal groups. Discrete in situ temperature data included measurements at 11,910 U.S. lakes and reservoirs from 1980 through 2015. Landsat temperature measurements could include 170,240 lakes and reservoirs once an operational product is achieved. The Landsat-derived temperature mean absolute error was 1.34°C in lake pixels >180 m from land, 4.89°C at the land-water boundary, and 1.11°C in estuaries based on comparison against discrete surface in situ measurements. This is the first study to quantify Landsat resolvable U.S. lakes and reservoirs, and large-scale validation of an operational satellite provisional temperature climate data record algorithm. Due to the high performance of open water pixels, Landsat satellite data may supplement traditional in situ sampling by providing data for most U.S. lakes, reservoirs, and estuaries over consistent seasonal intervals (even with cloud cover) for an extended period of record of more than 35 years.  相似文献   

2.
A simple and fast, physically based method for the estimation of global radiation is presented. It is applicable for clear‐sky multispectral satellite sensor imagery with channels at least in the VNIR region and works without the need for additional ground data. The atmospheric influence is taken into account using look‐up tables based on standard atmospheres from the MODTRAN code. The algorithm was tested with a time series of nine Landsat‐7 ETM+ scenes of a region in north‐eastern Germany. Remotely sensed global radiation is in close agreement with in situ measurements of the German Meteorological Service as indicated by RMS deviations of 20–24 W m?2 depending on the bands and atmospheric parameterization employed. The image‐derived global radiation at this level of accuracy is a useful supplement for studies in landscape ecology and related fields, for example as input for regional modelling of evapotranspiration.  相似文献   

3.
The applicability of satellite imagery products from different sensors (AVHRR‐derived multi‐channel sea surface temperature (MCSST), MODIS sea surface temperature (SST) products 5‐Min L2 Swath 1 km and Landsat TM band 6 thermal signature) for the comprehensive monitoring of temperature and its temporal patterns over a large lake is tested in this study. The coverage of cloud‐free satellite data for Lake Geneva is reported throughout a year and, more specifically, during a 13 day period in summer 2003. In a second step, we demonstrate the feasibility of the AVHRR/MODIS imagery to discern day and night temperature patterns, by generating day and night climatologies and various spatial statistics over the 13 day period. The different day and night surface thermal patterns observed by satellite imagery could be linked to the thermal structure existing in deeper water using the concept of the diurnal decoupled layer. The forcing of the persistent patterns, two warm cores divided by a saddle‐shaped cold anomaly, is explained by wind periodicity and insolation conditions. The patterns can be matched to features postulated by findings of different limnologists in the past. Other surface temperature related phenomena such as water upwelling and downwelling and the occurrence of plumes are related to meteorological and hydrological events. The lakewide average lake surface water temperature (LSWT) trends for day and night during the study period are roughly parallel. A sudden loss of stored heat can be explained by episodes of long fetch, synoptic wind (bise) that interrupted the predominant breeze regime.  相似文献   

4.
In this article, a method for the detection of wave field parameters from synthetic aperture radar (SAR) imagery in the fetch-limited Baltic Sea is presented. Over the Baltic Sea region, common southwest (SW) and west (W) winds induce steep waves with shorter wavelengths compared with ocean waves. Thus, with the use of previous SAR sensors (e.g. ENVISAT/ASAR), it was not possible to detect individual waves and retrieve image wave number spectra. Since the year 2007, when TerraSAR-X (TS-X) reached its orbit, high spatial resolution data is available for measuring the sea-state parameters: the individual waves up to 30 m wavelength and their refraction can be distinguished. The main objective of this work was to demonstrate the capability of detecting wave field parameter from (TS-X) imagery in the Baltic Sea. The wave field parameters obtained from the SAR imagery were compared with in situ measurements and the Simulating WAves Nearshore (SWAN) wave model. The comparison of SAR-based wave field information with buoy measurements showed high agreement in case of wave propagation direction (r = 0.95) and wavelength (r = 0.83). A significant correlation is also seen between SWAN- and SAR-derived wave propagation direction (r = 0.87) and wavelengths (r = 0.91). With the case studies, it is shown that SAR data enables one to detect land shadow effects and small-scale wave field variations in the coastal zone. It was shown that SAR data is also valuable for improving and interpreting the wave model results. In consequence of common slanting fetch cases over the Baltic Sea region, it was demonstrated that the peak wave directions differ from the mean wind directions up to 43°.  相似文献   

5.
TerraSAR-X (TS-X) is a new, fully polarized X-band synthetic aperture radar (SAR) satellite, which is a successor of the Spaceborne Imaging Radar X-band Synthetic Aperture Radar (SIR-X-SAR) and the SRTM. TS-X has provided high-quality image products over land and oceans for scientific and commercial users since its launch in June 2007. In this article, a new geophysical model function (GMF) is presented to retrieve sea surface wind speeds at a height of 10 m (U 10) based on TS-X data obtained with VV polarization in the ScanSAR, StripMap and Spotlight modes. The X-band GMF was validated by comparing the retrieved wind speeds from the TS-X data with in situ observations, the high-resolution limited area model (HIRLAM) and QuikSCAT scatterometer measurements. The bias and root mean square (RMS) values were 0.03 and 2.33 m s?1, respectively, when compared with the co-located wind measurements derived from QuikSCAT. To apply the newly developed GMF to the TS-X data obtained in HH polarization, we analysed the C-band SAR polarization models and extended them to the X-band SAR data. The sea surface wind speeds were retrieved using the X-band GMF from pairs of TS-X images obtained in dual-polarization mode (i.e. VV and HH). The retrieved results were also validated by comparing with QuikSCAT measurements and the results of the German Weather Service (DWD) atmospheric model. The obtained RMS was 2.50 m s?1 when compared with the co-located wind measurements derived from the QuikSCAT, and the absolute error was 2.24 m s?1 when compared with DWD results.  相似文献   

6.
The number, size, and distribution of inland freshwater lakes present a challenge for traditional water-quality assessment due to the time, cost, and logistical constraints of field sampling and laboratory analyses. To overcome this challenge, Landsat imagery has been used as an effective tool to assess basic water-quality indicators, such as Secchi depth (SD), over a large region or to map more advanced lake attributes, such as cyanobacteria, for a single waterbody. The overarching objective of this research application was to evaluate Landsat Thematic Mapper (TM) for mapping nine water-quality metrics over a large region and to identify hot spots of potential risk. The second objective was to evaluate the addition of landscape pattern metrics to test potential improvements in mapping lake attributes and to understand drivers of lake water quality in this region. Field-level in situ water-quality measurements were collected across diverse lakes (n = 42) within the Lower Peninsula of Michigan. A multicriteria statistical approach was executed to map lake water quality that considered variable importance, model complexity, and uncertainty. Overall, band ratio radiance models performed well (R2 = 0.65–0.81) for mapping SD, chlorophyll-a, green biovolume, total phosphorus (TP), and total nitrogen (TN) with weaker (R2 = 0.37) ability to map total suspended solids (TSS) and cyanobacteria levels. In this application, Landsat TM and pattern metrics showed poor ability to accurately map non-purgable organic carbon (NPOC) and diatom biovolume, likely due to a combination of gaps in temporal overpass and field sampling and lack of signal sensitivity within broad spectral channels of Landsat TM. The composition and configuration of croplands, urban, and wetland patches across the landscape were found to be moderate predictors of lake water quality that can complement lake remote-sensing data. Of the 4071 lakes, over 4 ha in the Lower Peninsula, approximately two-thirds, were identified as mesotrophic (n = 2715). This application highlights how an operational tool might support lake decision-making or assessment protocols to identify hot spots of potential risk.  相似文献   

7.
The temperature–vegetation index method (TVX method, also called contextual method) for the area-wide mapping of instantaneous air temperature is adopted for use with Landsat 7 Enhanced Thematic Mapper Plus (ETM+) data. The method requires multispectral data consisting of bands in the red, near-infrared and thermal spectral regions, and no additional data. The approach is complemented with an iterative filtering routine for eliminating outliers and an interpolation algorithm for filling data gaps. The adopted method is applied to a multi-temporal dataset of nine ETM+?scenes, covering large parts of north-eastern Germany including the Durable Environmental Multidisciplinary Monitoring Information Network (DEMMIN) test site. Thus, for the first time the TVX method is applied to fine spatial resolution data and a central European region. The satellite-derived air temperatures (60 m spatial resolution) are compared with in situ measurements, showing an average error of about 3 K (root mean square, RMS), whereas the mean error in land surface temperature (LST) estimation is about 2 K. The results compare well with the in situ values throughout all seasons. The accuracy of about 3 K is in line with previously reported results for the TVX method (employing medium spatial resolution data) as well as for physically based approaches (ecosystem- or energy-balance models). Only remote sensing models incorporating in situ air temperature (as training data for neural networks or in multiple regression analysis) are reported to perform better in terms of RMS deviations. In the past, overestimation of air temperature by the TVX method was repeatedly observed. It is shown that the remote sensing approach tends to under- or overestimate the in situ air temperatures, depending on the in situ measurement heights. In conjunction with the attempt to assign the satellite-derived air temperature to a certain height above ground, the possibility of a simple correction for reference height is investigated. Over- and underestimations larger than 2 K seem to reflect existing differences in temperature rather than calculation errors. Furthermore, the dependence of the derived air temperature spatial pattern on different moving window sizes is shown. Possible sources of errors and limitations of the approach are discussed in detail.  相似文献   

8.
This paper aims to propose operational algorithms to retrieve the total atmospheric water vapour content (W) using the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on‐board Meteosat 8. MODTRAN3.5 was used to obtain simulated data in the thermal infrared channels IR10.8 and IR12.0, in order to determine the numerical values of the coefficients of the algorithms. The algorithm proposed for land pixels takes into account the SEVIRI observation geometry and the radiometric temperatures obtained in the split‐window channels at two different times during a day and requires a minimum difference of 10 K in terms of temperature between the two situations. Comprehensive error analyses gave rms errors lower than 0.5 g cm?2 when observations were taken between the nadir and 50°. The algorithm is validated with in situ values, i.e. radiosondes and W measurements with a CIMEL CE318 sun photometer, both obtained from a field campaign, with rms validation errors of 0.2 and 0.7 g cm?2, respectively. Additionally, six stations all over the SEVIRI field of view were selected to validate the algorithm from radiosondes data, providing an rms error of 0.4 g cm?2. Concerning sea pixels, the linear atmosphere–surface temperature relation is adapted to SEVIRI and takes into account the sea‐surface temperature, the atmospheric effective temperature, and the radiometric temperature in the IR10.8 channel. The total error obtained from this methodology has a value between 0.8 and 1.1 g cm?2, and the validation is carried out using radiosonde data from four stations near the sea, providing rms errors lower than 0.6 g cm?2.  相似文献   

9.
In this paper three methods are presented that retrieve the atmospheric water vapour from DAIS (digital airborne imaging spectrometer) data in the framework of the DAISEX (DAIS Experiment) campaigns carried out by ESA (European Space Agency). The three methodologies analysed in the paper are: (i) the ratio technique, in which the water vapour is obtained from visible and near‐infrared bands; (ii) the split‐window technique; and (iii) the split‐window covariance‐variance ratio technique, in which the water vapour content is retrieved from thermal infrared bands. A comparison between the atmospheric water vapour content extracted from the DAIS images using these techniques and that obtained from in situ radiosoundings shows a root mean square deviation of around 0.1?g?cm?2 for the first two methods and 0.4?g?cm?2 for the last one. Finally, as an application, the atmospheric water vapour retrieved was used to perform the atmospheric correction for DAIS thermal bands and retrieve land surface temperatures, obtaining in this way root mean square deviations less than 2?K for the least absorbent bands.  相似文献   

10.
Remote sensing techniques can be used to estimate and map the concentrations of suspended matter in inland water, providing both spatial and temporal information. Although an empirical approach to remote sensing of inland waters has been carried out frequently, satellite imagery has not been incorporated into routine lake monitoring programmes due in part to the lack of a standard prediction equation with multi‐temporal capacity for suspended matter. Empirical and physical models must be developed for each lake and its corresponding turbidity composition if they are to be compared over time, or with other bodies of water.

This study aimed to develop and apply multi‐temporal models to estimate and map the concentrations of total suspended matter (TSM) in Lake Taihu, China. Two Landsat‐5 Thematic Mapper (TM) images and nearly contemporaneous in situ measurements of TSM were used. A modified Dark‐Object Subtraction (DOS) method was used, and appeared to be adequate for atmospheric correction. The relationships were examined between TSM concentrations and atmospherically corrected TM band and band ratios. Results of this study show that the ratio TM4/TM1 has a strong relationship with TSM concentrations for lake waters with relatively low concentrations of phytoplankton algae. However, TM3 provided a strong predictive relationship with TSM concentrations despite varied water quality conditions. Different prediction models were developed and compared using multiple regression analysis. The Akaike Information Criteria (AIC) approach was used to choose the best models. The validation of the multi‐temporal capability of the best models indicated that it is feasible to apply the linear regression model using TM3 to estimate TSM concentrations across time in Lake Taihu, even if no in situ data were available.  相似文献   

11.
Three methods are currently used to retrieve land surface temperatures (LSTs) from thermal infrared data supplied by the Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) sensors: the radiative transfer equation, mono-window, and generalized single-channel algorithms. Most retrieval results obtained using these three methods have an average error of more than 1 K. But if the regional mean atmospheric water vapour content and temperature are supplied by in situ radiosounding observations, the mono-window algorithm is able to provide better results, with a mean error of 0.5 K. However, there are no in situ radiosounding data for most regions. This article provides an improved method to retrieve LST from Landsat TM and ETM+ data using atmospheric water vapour content and atmospheric temperature, which can be obtained from remote-sensing data. The atmospheric water vapour content at the pixel scale was first calculated from Moderate Resolution Imaging Spectroradiometer (MODIS) data. The emissivities of various land covers and uses were then defined by Landsat TM or ETM+ data. In addition, the temperature–vegetation index method was applied to map area-wide instantaneous near-surface air temperatures. The parameters of mean atmospheric water vapour content and temperature and land surface emissivity were finally inputted to the mono-window algorithm to improve the LST retrieval precision. Our results indicate that this improved mono-window algorithm gave a significantly better retrieval of the estimated LST than that using the standard mono-window algorithm, not only in dry and elevated mountain regions but also in humid regions, as shown by the bias, standard deviation (σ), and root mean square deviation (RMSD). In Madoi County, the improved mono-window algorithm validated against the LST values measured in situ produced a bias and RMSD of –0.63 K and 0.91 K, respectively, compared with the mono-window algorithm’s bias and RMSD of –1.08 K and 1.27 K. Validated against the radiance-based method, the improved algorithm shows bias and RMSD values of –1.08 K and 1.27 K, respectively, compared with the initial algorithm’s bias and RMSD –1.65 K and 1.75 K. Additionally, the improved mono-window algorithm also appeared to be more accurate than the mono-window algorithm, with lower error values when validated against in situ measurement and the radiance-based method in the validation area in Zhangye City, Gansu Province, China. Remarkable LST accuracy improvements are shown by the improved mono-window algorithm, with better agreement not only with the in situ measurements but also with the simulated LSTs in the two validation areas, indicating the soundness and suitability of this method.  相似文献   

12.
Many parts of East Africa are experiencing dramatic changes in land‐cover/use at a variety of spatial and temporal scales, due to both climatic variability and human activities. Information about such changes is often required for planning, management, and conservation of natural resources. Several methods for land cover/change detection using Landsat TM/ETM+ imagery were employed for Lake Baringo catchment in Kenya, East Africa. The Lake Baringo catchment presents a good example of environments experiencing remarkable land cover change due to multiple causes. Both the NDVI differencing and post‐classification comparison effectively depicted the hotspots of land degradation and land cover/use change in the Lake Baringo catchment. Change‐detection analysis showed that the forest cover was the most affected, in some sections recording reductions of over 40% in a 14‐year period. Deforestation and subsequent land degradation have increased the sediment yield in the lake resulting in reduction in lake surface area by over 10% and increased turbidity confirmed by the statistically significant increase (t = ?84.699, p<0.001) in the albedo between 1986 and 2000. Although climatic variations may account for some of the changes in the lake catchment, most of the changes in land cover are inherently linked to mounting human and livestock population in the Lake Baringo catchment.  相似文献   

13.
Aquatic features critical to watershed hydrology range widely in size from narrow, shallow streams to large, deep lakes. In this study we evaluated wetland, lake, and river systems across the Prairie Pothole Region to explore where pan-sharpened high-resolution (PSHR) imagery, relative to Landsat imagery, could provide additional data on surface water distribution and movement, missed by Landsat. We used the monthly Global Surface Water (GSW) Landsat product as well as surface water derived from Landsat imagery using a matched filtering algorithm (MF Landsat) to help consider how including partially inundated Landsat pixels as water influenced our findings. The PSHR outputs (and MF Landsat) were able to identify ~60–90% more surface water interactions between waterbodies, relative to the GSW Landsat product. However, regardless of Landsat source, by documenting many smaller (<0.2 ha), inundated wetlands, the PSHR outputs modified our interpretation of wetland size distribution across the Prairie Pothole Region.  相似文献   

14.
This paper presents the results of an airborne thermal infrared (TIR) experiment. The data were obtained during 6–9 February 1992 period in the Bay of Bothnia, the northern section of the Baltic Sea, in connection with an ERS‐1 field campaign. Two Aegema model 880 TIR cameras were used with nominal wavelengths at 5 and 10 µm, attached to the front of the helicopter with a Tyler mount. The camera's thermal resolution is 0.2 K; after corrections for atmosphere effects, the surface temperature accuracy is 0.5 K. The spatial resolution of individual images is 70 cm at the 300‐m flight altitude. The measurement programme was successful, producing high‐quality TIR data over ice for two different days, even under difficult weather conditions. Ice temperatures ranged from open water temperatures to 261 K for fast ice conditions on the day on the first flight. The standard deviation of the surface temperature, generally, increased with ice thickness with a value of ~0.4 K for maximum thickness, and autocorrelation length scales not exceeding a value of 5 m. Generally, all the higher values of standard deviation (>0.7) of surface temperatures were for scenes with mixed ice/open water. The results show that TIR has a substantial ability to classify ice type and thickness when the air temperature is less than 269 K, from open water at the freezing point to thin nilas and thicknesses up to 20–45 cm in the fast ice zone. In addition, a quasi‐steady sea‐ice model is used to provide a physical interpretation of the sea‐ice surface temperatures. The use of the model requires information on the atmospheric surface layer and snow thickness data, together with calibration points. The model worked well when the air temperature was around 260 K or less.  相似文献   

15.
Land surface temperature (LST) is a key parameter in the physics of land surface processes on regional and global scales. Although there are MODIS and Landsat land surface reflectance products, there is no LST product for Landsat data due in part to many challenges in the development of an operational Landsat LST product generating system because Landsat possesses only one thermal infrared channel. The aim of this article is to describe the Landsat LST product generation project launched by the Centre for Earth Observation and Digital Earth (CEODE), Chinese Academy of Sciences. The generalized single-channel (SC) algorithm proposed by Jiménez-Muñoz et al. is used for LST retrieval. It is fully operational, requires minimal input data requirements, and has acceptable precision. Total atmospheric water vapour content is the key input parameter required by the SC algorithm. In this project, the MODIS water vapour product is employed to derive total atmospheric water vapour content. In this way, an operational Landsat LST product generation program was constructed by integration of MODIS and Landsat satellite imagery.  相似文献   

16.
Marine-terminating outlet glaciers discharge mass through iceberg calving, submarine melting, and meltwater run-off. While calving can be quantified by in situ and remote-sensing observations, meltwater run-off, the subglacial transport of meltwater, and submarine melting are not well constrained due to inherent difficulties observing the subglacial and proglacial environments at tidewater glaciers. Remote-sensing and in situ measurements of surface sediment plumes, and their suspended sediment concentration (SSC), have been used as a proxy for glacier meltwater run-off. However, this relationship between satellite reflectance and SSC has predominantly been established using land-terminating glaciers. Here, we use two Svalbard tidewater glaciers to establish a well-constrained relationship between Landsat-8 surface reflecance and SSC and argue that it can be used to measure relative meltwater run-off at tidewater glaciers throughout a summer melt season. We find the highest correlation between SSCs and Landsat-8 surface reflectance by using the red + NIR band combination (r2 = 0.76). The highest correlation between SSCs and in situ field spectrometer measurements is in the 740–800 nm wavelength range (r2 = 0.85), a spectral range not currently measured by Landsat. Additionally, we find that in situ and Landsat-8 measurements for surface reflectance of SSCs are not interchangeable and therefore establish a relationship for each detection method. We then use the Landsat-8 relationship to calculate total surface sediment load, finding a strong correlation between total surface sediment load and a proxy for meltwater run-off (r2 ≥ 0.89). Our results establish a new metric to calculate SSCs from Landsat-8 surface reflectance and demonstrate how the SSC of subglacial sediment plumes can be used to monitor relative seasonal meltwater discharge at tidewater glaciers.  相似文献   

17.
利用Landsat ETM+数据,采用混合像元线性光谱分解方法提取的城市植被覆盖度与不透水面表征城市下垫面,通过单窗算法反演地表真实温度,对兰州市中心城区的夏季城市热岛强度与城市下垫面的空间分布关系进行相关分析。结果显示,利用中等分辨率ETM+影像对兰州中心城区不透水面和植被盖度分布提取,其成本较低,精度令人满意;兰州城区植被覆盖、不透水面与热岛强度的分布呈空间正自相关,地表温度的空间依赖性极强,与植被盖度和不透水面在空间方向上的相关性差异较大。  相似文献   

18.
Special characteristics of deep chlorophyll maximum in the Bohai Sea of China are examined in this study with data from four cruises measured in June and August of 2003, and 2005 separately. Measured data of 2003 are used to construct a new blue‐to‐green band‐ratio ocean colour model to retrieve concentrations of DCM (deep chlorophyll maximum) from above‐surface remote‐sensing reflectance, then measured data of 2005 are used to validate this model. The validation result demonstrates that this model generally performs well in turbid coastal water areas with depth of DCM smaller than 7 m. The correlation coefficient between the model outputs and in situ data is 0.94 and the average relative error is 22.1% in June; the correlation coefficient is 0.96 and the average relative error is 9.67% in August. These results suggest that satellite sensors have the ability to detect the existence of DCM in coastal waters.  相似文献   

19.
Lake Malawi is the second largest lake in Africa by volume and an important regional source of food. Seasonal fluctuations in the primary production of the lake are principally controlled by the lake's thermal structure, which modulates the mixing of nutrient-rich deep water with that of the phytoplanktonrich near-surface layer. Satellites potentially offer an efficient, low cost method of providing information on the lakes thermal structure over the longer term via remote sensing observations of lake surface temperature. Here we investigate the accuracy of remotely sensed lake surface temperatures derived using data from the NOAA-11 AVHRR over a two-year period (1992-1993). Optimised triple window atmospheric correction algorithms are shown to provide an accuracy of around 0.5°C when compared to in situ  相似文献   

20.
In this paper, a theoretical study complementary to others given in the literature about the errors committed on the land surface temperature retrieved from the radiative transfer equation in the thermal infrared region by remote sensing techniques has been analysed. For this purpose, the MODTRAN 3.5 code has been used in order to simulate different conditions and evaluate the influence of several parameters on the land surface temperature accuracy: atmospheric correction, noise of the sensor, land surface emissivity, aerosols and other gaseous absorbers, angular effects, wavelength uncertainty, full‐width half‐maximum of the sensor and band‐pass effects. The results show that the most important error source is due to atmospheric effects, which leads to an error on surface temperature between 0.2 K and 0.7 K, and land surface emissivity uncertainty, which leads to an error on surface temperature between 0.2 and 0.4 K. Hence, assuming typical uncertainties for remote sensing measurements, a total error for land surface temperature between 0.3 K and 0.8 K has been found, so it is difficult to achieve an accuracy lower than these values unless more accurate in situ values for emissivity and atmospheric parameters are available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号